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CHAPTER I 

INTRODUCTION 

In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity 

tenderer is documented. First, a new look is taken at the traditional radiosity equation, and a new 

form is presented in which the matrix of linear system coefficients is transformed into a symmet

ric matrix, thereby simplifying the problem and enabling a new solution technique to be applied. 

Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to par
allel implementation, and scalability. Significant enhancements are also discovered which both 

improve their theoretical foundations and improve the images they generate. The resultant hier
archical radiosity algorithm is then examined for sources of parallelism, and for an architectural 

mapping. Several architectural mappings are discussed. A few key algorithmic changes are sug
gested during the process of making the algorithm parallel. Next, the performance, efficiency, and 

scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas 
which have the potential to further enhance the hierarchical radiosity method, or provide an 

entirely new forum for the application of hierarchical methods. 

1.1 Realistic Image Synthesis 
1.1.1 General 

Realistic image synthesis is a subdiscipline of computer graphics which deals specifically with 
producing, or rendering, images that look as realistic or true-to-life as possible. Applications of 

realistic image synthesis lie in cinematography, stagecraft, architectural design, simulation, and 

virtual reality. 

On a conceptual level, these images are rendered by modeling the physics of light propagation 

in a scene as well as is either practical or well-understood. The key problem is to solve for the 

equilibrium light energy (or power) transfer between all surfaces of a collection of objects (scene). 

This is called a global illumination solution because light leaving any surface has the ability to 

affect the brightness of all other surfaces in a scene. 

In nature, this problem is a continuous one. That is, a photon of light may arrive or depart 

from an (essentially) infinite number of positions on a surface. The solution to the continuous 

radiosity problem is not tractable for any but the simplest configurations of objects. In order to 

make the problem computationally tractable for complex scenes, a number of simplifying assump

tions and approximations are made. 

1.1.1.1 Geometric object modeling 

In order to render a picture of a scene, one must be able to represent the scene in some way. 

This is usually done by representing the various objects in a scene with collections of simpler geo
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metric primitives such as polygons, spheres, cylinders, bivariate patches (such as spline patches 

or Bézier patches), implicit surfaces, etc. However, no physical objects can be accurately modeled 

with perfect geometric primitives; real objects always have scratches, dents, texture, creases, etc. 

which are difficult to model. Therefore, a certain permanent loss of realism happens during the 

modeling process. Much research has been done on how to effectively model physical objects and 

their properties. Broad areas include constructive solid geometry (CSG), primitives, modeling 

operations, and reflectance models. 

1.1.1.2 Tessellation 

Previously, mention was made of modeling a physical object with curved geometric primitives 

such as spheres and bivariate patches. Some rendering methods, such as ray tracing (to be dis

cussed later), are able to directly render any curved surface so long as certain constraints are met. 

Other methods, such as radiosity (also to be discussed later), are presently unable to render 

curved surfaces of any kind. The approach that is generally taken to get around this limitation is 

to approximate a curved surface with a mesh of polygons. The process of generating a mesh of 
polygons to approximate a curved surface is called tessellation. 

Tessellation represents a further degradation of realism in the modeling process. A tessellated 
sphere is an approximation to a real sphere, which is in turn an approximation to the physical 

object to be rendered. It is difficult to quantify the error introduced during either modeling pro
cess. 

1.1.1.3 Discretization 

In a physical scene, light propagates from surface to surface in a continuous manner. Every 
point on every surface may have a different brightness. An essentially infinite number of such 

points and brightnesses exist in a physical setting. Since a computer is incapable of representing 

an infinite number of brightnesses in a finite amount of memory, an approximation to the contin

uous brightness must be made. This is done by discretizing the scene into finite-sized areas, or 

patches, which will be assumed to be of constant brightness. In this way, rendering is transformed 

from a continuous problem into a discrete problem suitable for numerical solution on a computer. 
Again, it is difficult to quantify just how much realism is lost when the problem is discretized. It 

will become clear in Chapter IV that quantifying discretization error can potentially lead to 
greatly-improved rendering methods. 

1.1.1.4 Light reflection models 

Once the physical shapes of primitives in the scene have been modeled, one must then model 

the physics of light reflection from the surfaces. Physical surfaces have many different modes of 

light reflection. For example, the surface of a sheet of paper reflects light in a very different way 

than the surface of a mirror. 

Surfaces like a sheet of paper, a pile of powder, velvet, and most other rough surfaces exhibit a 

light reflection mode called diffuse reflection. In this mode, the amount of light energy leaving a 

surface is independent of both the orientation at which the light arrives, and the orientation at 
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which it leaves. This is the simplest form of light reflection, and the easiest to model. Under this 

reflection mode, a surface's reflection properties are completely described by a single scalar value, 

called reflectance, for a given wavelength of incident light. Of course, no physical surface is a per

fect diffuse reflector of energy, and thus, error is introduced into the rendering. 

More complex is the directionally dependent reflection mode known as specular reflection. In 
specular reflection, the intensity of light leaving a surface depends upon the angle at which it 

impinges on the surface, and the angle at which it leaves the surface. Thus, the reflectance of a 

specular surface can be a function of up to four angular variables (azimuth and elevation for 

incoming and outgoing directions) plus a wavelength variable and a polarization angle. Most real 

surfaces have significant specular components. Although less error will be introduced into a ren

dering by attempting to model a surface's specularity, the calculations involved are made much 
more difficult. Ray tracing has made significant progress modeling arbitrai^ surface specularity, 

but only very limited progress has been made with scenes demanding accurate diffuse reflection 

models [Immel 86, Billion 91]. 

Transparent or translucent surfaces not only reflect and absorb energy, but transmit it as 

well. Transmission, like reflection, can take the form of either diffuse or specular character. Once 
again, ray tracing accounts for transmission well. The radiosity method has yet to effectively deal 

with any form of transmission. 

There are still other issues involving surface physics which have not been addressed, and can 

contribute significant error to a realistic rendering. Most obvious is the dependence of surface 

reflectivity upon the wavelength of the incident radiation. The reflectivity of physical surfaces 

depends strongly on the wavelength of incident light. Most current reflectance models allow the 

magnitude of reflected light to change with wavelength, but do not allow the specular angular 

dependence to vary with wavelength [Westin 92, and others]. 

Less important effects which are not modeled by any existing reflectance models are fluores

cence, polarization, interference, and diffraction. Fluorescence occurs when a surface emits light 

of a wavelength that is different from the incident light wavelength. This coupling between wave
length bands is completely ignored by all existing renderers. Interference, and diffraction effects 
are only relevant in the presence of a coherent light source, and are usually of negligible impor

tance. It is likely that drastically different rendering methods will be required to properly account 

for these phase- and path-dependent effects. 

1.1.2 The rendering equation 

We will now discuss the mathematical foundations which have been developed for the field of 

realistic image synthesis. In some cases, such as light reflection models, the mathematics is rela

tively new rWhitted 80, Cook 82, Kajiya 85, du Montcel 85, He 91, Billion 91, Westin 92, Ward 92]. 
In other cases, such as the basic radiosity equation, the theory dates back to radiative heat trans

fer literature of the 1950's [Sparrow 78, and earlier]. 
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The "Rendering Equation" [Kajiya 86] is a unifying, high-level, continuous expression of the 

problem to be solved for a realistic or nonrealistic rendering. All known rendering methods, both 

realistic and nonrealistic, can be derived from this unifying equation via various special cases, 

and assumptions. The rendering equation is expressed as follows: 

I { x , x ' )  =  g ( x , x ' )  I ^ G ( % , % ' )  + ^ ç { x , x ' , x " ) I { x ' , x " ) d x "  
L 5 — 

(1) 

where: 
x,x',x" 

H x , x ' )  

g i x , x ' )  

t { x , x ' )  

p ( x , x ' , x " )  

S 

are three separate points in the scene, 

is the light intensity passing from point a:' to 

is the visibility function between point x' and *, 

is the light intensity emitted by point x' toward 

is the fraction of light scattered by point x' from x" toward x, and 

is the hemisphere above x' from which light may arrive. 

The integrand of (1) expresses the light transport from x" to to %. This three-point form is 

necessary to account for the directional reflectivity dependence of specular surfaces. The setup for 

(1) may be expressed graphically, as shown in Figure 1. The function g(,x,x') requires further 
explanation. This function takes on the value 0 if there is not an unoccluded straight-line path 

between points x and x', and the value 1 if the path between them is clear. The rendering equa

tion is only valid for a single wavelength of light at a time. The rendering equation is not amena

ble to solution by computer in the form presented above, so various simplifications are made. The 

two most predominant ones are presented below. 

Surface x 

Surface x 

Surface x' 

Figure 1: Three-point transport geometry 

1.1.3 Ray tracing 

Ray tracing is a technique developed by Whitted [Whitted 80] which traces light propagation 

paths backward from the eye to a light source. It accounts well for diffuse and specular reflection. 
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but only locally at a patch. Ray tracing is implemented such that all rays are completely indepen
dent, and the system has no memory from one ray to the next. Therefore, ray tracing as developed 
by Whitted does not solve the global illumination problem. 

Mathematically, the rendering equation can be written in operator form [Courant 53] as: 

I  =  g e + g M I ,  (2) 

where M is the linear operator given by the integral in (1). We may solve (2) in the following way: 

( l - g M ) I  =  g z  

/ =  { l - g M ) ~ ^ g E  

=  [ l + g M +  {gM)^+ igM)^  +  . . . ] g E  

=  g z + g M g e  +  g ( . M g ) ^ E + g ( M g ) h  +... (g) 

Each term in (3) can be thought of as representing one "bounce" of a ray as traced through the 

scene. Furthermore, only one ray is followed after each bounce, so the operator M is modified to 

account for this: 

I  = g £  +  g M Q g t + g ( . M o g ) h + g ( M Q g ) ^ E  +  . . .  (4) 

where M Q is the ray tracing scattering model. 

A large body of literature exists for ray tracing. The technique has been extended in may ways 

since its introduction in 1980. Stochastic sampling techniques have been used to extend the range 

of optical effects possible with ray tracing. Some of these effects include fuzzy shadows, depth of 
field, fog, and area light sources [Cook 84, Cook 86, Lee 85]. A great number of geometrical primi

tives have been analyzed, and numerical methods created to ray trace them [Edwards 82, Kajiya 
82, Hanrahan 83, Kajiya 83a, Fontes 84, Kajiya 83b, Kajiya 84, Sederberg 84, van Wjk 84a, van 

Wijk 84b, Bronsvoort 85, Tbth 85, Joy 86, Sweeny 86, Burger 89, Giger 89, Hart 89, Kalra 89, 

Lischinski 90, Nishita 90]. Innovative data structures have been developed to aid in the ray-object 

intersection operation [Rubin 80, Glassner 84, Coquillart 85, Fujimoto 86, Kay 86, Jan sen 86, 
Naylor 86, Arvo 87, Goldsmith 87, Fussell 88, MacDonald 88, Devillers 89, Montani 90, Thirion 

90]. Constructive solid geometry (CSG) has been explored as a way of combining basic primitive 

types into more complex objects [Cordonnier 85, Kunii 85, Wyvill 85, Gervautz 86, Naylor 86, 

Wyvill 86, Youssef 86, Arnaldi 87, Cottingham 89, Getto 89, Carter 89, Montani 90]. A method has 

been developed which "blends" two or more implicit surfaces into a smoothed version of the collec

tion [Blinn 82, Filip 89]. For more general types of objects, deformations may be applied [Barr 84, 

Barr 86, Sederberg 86]. 

1.1.4 Radiosity 

The method of radiosity rendering was developed from the field of radiative heat transfer 

[Sparrow 78, Siegel 81]. It attempts to solve for the global balance of energy transfer between 

objects in the scene. The radiosity technique is correct only for perfectly diffuse surfaces, although 
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recent improvements have extended the technique, in a crude way, to include some specular 
effects. The continuous radiosity equation [Cohen 92] is: 

b  (%') = e (a:') + p (*') Jô (*) C? (*, x ' ) V ( x ,  x ' )  d A  (5) 
X 

COS0, COS0„ 

where: 
b (,x) is the radiant intensity at point x in the scene and is given in units of 

watts per square meter, 

e  ( x )  is the radiant emissivity at point x  in the scene in watts per square 
meter, 

p (z) is the diffuse reflectivity of point x in the scene, is unitless, and repre
sents the fraction of light reflected back into the hemisphere above 
a:, 

GdA is the differential form factor between x and is unitless, and repre
sents the fraction of light emitted from * that reaches x ' ,  

0 j  i s  t h e  a n g l e  b e t w e e n  t h e  s u r f a c e  n o r m a l  a t  x  a n d  x ' - x ,  

6g is the angle between the surface normal at x '  and x - x ' ,  and 

V  ( x , x ' )  is the visibility between points x  and x '  and is 1 if the points are mutu
ally visible and 0 otherwise. 

Equation (5) is a continuous equation, and represents a problem of an infinite number of vari

ables. In order to make it computationally tractable, the environment is discretized into N 

patches which are assumed to be of constant intensity. The discrete radiosity equation [Groral 84] 

is: 

N  

bi = ei + Pi^bjFij (6) 
j = y  

where: 
6, is the radiant intensity of patch i given in units of watts per square 

meter, 
e, is the radiant emissivity of patch i in watts per square meter, 

p. is the reflectivity of patch i, is unitless, and is the fraction of incident 
light that is reflected back into the hemisphere above the patch, and 

F^j is the "form factor" from patch i to patch j, is unitless, and represents 
the fraction of light leaving patch i that reaches patch j. 

Equation (6) is applied at every patch j  in a scene. Thus, a system of linear equations is pro

duced that, when solved, gives a global illumination solution for the radiant intensity at every 

patch in the scene. 
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The earliest radiosity Tenderers formed the dense matrix Fy, and solved it using conventional 

methods such as Gaussian Elimination with partial pivoting [Goral 84]. Such an approach is of 
0(N^) time complexity because of the solution process. 

It was later noted that the linear system is diagonally dominant, and therefore amenable to 

iterative methods such as Jacobi iteration and Gauss-Seidel iteration [Nishita 85, Cohen 85]. 
Coupling iterative solution to the fact that a radiosity solution need be no more accurate than 

three or four decimals, the time complexity of the problem is reduced to 0(.N^). This reduction in 
complexity is because iterative solvers of this type are 0(.N^) per iteration for a dense system, and 

take 0(1) iterations to converge to the fixed precision criterion. Also, at this point, note that deter
mination of the form factor matrix is of OiN^) time complexity because, in general, there are 

N^~N nonzero matrix elements. At this point, a further reduction in the radiosity algorithm's 

time complexity is only possible if both the matrix setup and the system solution are improved. 

In 1991, Han rah an, Salzman and Aupperle [Hanrahan 91] applied a hierarchical method sim

ilar to the 0{N log AO AT-body algorithm [Appel 85] to the construction of the form factor matrix. 
The method takes advantage of the fact that since the final radiosity solution is only needed to a 

fixed precision, then the form factors may be approximated, in a hierarchical fashion, to a com
mensurate level of accuracy. Evidence is presented, although a convincing proof is not, that the 

algorithm approximates the form factor matrix with 0{N) blocks. Thus, matrix setup time is 

reduced in complexity to 0(iV), and the matrix-vector multiply kernel of common iterative solvers 

is also reduced to 0(AO. Thus, the overall time complexity of the hierarchical radiosity algorithm 

is 0(N). 

Only one researcher has succeeded, so far, in extending the radiosity method to include specu

lar reflection effects without resorting to ray tracing [Sillion 91]. This highly innovative method 

uses spherical harmonics to accumulate the directional light intensity variations at each vertex in 

the scene. The method, however, consumes a tremendous amount of memory relative to the stan

dard diffuse radiosity implementation. This limits the resolution of specular effects severely. 

1.1.5 Hybrid methods 

Ray tracing accounts well for specular reflection, but does not solve for a correct global illumi

nation solution. Radiosity solves for global illumination, but has not shown itself to be easily 

extended to handle directional lighting effects, including specularity. Several researchers have 

taken the logical next step, and attempted to create a rendering method which is a fusion of ray 

tracing and radiosity, combining the best aspects of both methods [Chen 90, Hermitage 90, Immel 

86, Jessel 91, Shirley 90, Shirley 91, Sillion 89, Wallace 87, Ward 88]. 

This approach, however, is not as straightforward as it might seem. One's first instinct might 

be to use ray tracing to handle specular effects, and radiosity to handle diffuse effects, and provide 
the global illumination solution. Unfortunately, a global illumination solution is not merely a lin

ear superposition of the two reflection modes. Some success has been enjoyed by these methods, 
but they remain physically incorrect though pleasing in appearance of results. 
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1.2 Parallelism in Computer Graphics 
Parallelism has come slowly to the computer graphics community. 'Wrtually every research 

paper done until the late 1980's was based on work done on the VAX 11/780 or similar serial sys

tems. Parallelism was first applied to graphics rendering hardware. It was then applied to the 
more computationally intensive rendering methods such as ray tracing and radiosity. 

1.2.1 Non-realistic 

A wide variety of graphics hardware has been developed since the 1980's which uses parallel 

processing concepts to accelerate drawing of geometric primitives. Notable architectures among 

these are Pixel-Planes 5, Pixel Machine, and SGI Reality Engine. 

1.2.1.1 Pixel-Planes 5 

The Pixel-Planes 5 (Pxpl5) graphics computer was developed at the University of North Caro

lina at Chapel Hill by Henry Fuchs et. al. [Fuchs 89] It is a heterogeneous multiprocessor which 

acts as an attached processor to a high-end workstation. It has applications for real-time simula
tions, volume rendering for medical imaging, scientific visualization, and realistic image synthe

sis via the radiosity method. Peak performance is 1 million Phong-shaded triangles per second, 
39,000 Gouraud shaded polygons per second, 13,000 smooth shaded spheres per second, or 11,000 

shadowed polygons per second. This puts Pxpl5 well into the real-time environment for images 
consisting of a relatively small number of polygonally defined objects. 

The Pxpl5 system consists of five basic subsystems: graphics processors, renderers, frame 

buffer, a host interface, and a token ring interconnect. The graphics processors are the floating 

point math engines of the Pxpl5 system. It is their job to perform the 3D geometrical transforma

tions on primitives, and generate rendering requests to the renderers. There may be up to 32 
graphics processors in a Pxpl5 system. The array of graphics processors effectively comprises a 

MIMD computer. 

Next come the renderers. A Tenderer is a SIMD array of 128x128 pixel processors, memory, 

and controller. Renderers are assigned to 128x128 blocks of pixels in the frame buffer to calculate 

their final contents from requests generated by the Graphics Processors. A SIMD array is a logical 

choice for pixel operations since such operations are simple, but spread over a large area. The 

1280x1024 frame buffer is tiled into 128x128 patches, and a Renderer assigned to each patch. 

This way, a large number of Renderers may be actively rendering portions of the final image in 

their local buffers simultaneously. Renderers are built on the concept of logic-enhanced memory 

chips. A single Renderer chip contains 256 pixel processors, 208 bits of fast SRAM per processor, 

and one quadratic expression évalua tor (QBE). The QEE evaluates the expression 

Ax + By + C + Dx' + Exy + Fy"^ with global inputs A-F. This is useful for shading curved surfaces 

and in calculating a spherical radiosity model. Furthermore, each pixel processor has access to an 

external 4K bits of additional backing store in the form of VRAM. This gives each processor a sig
nificant amount of memory to use for Z-buffering or Constructive Solid Geometry. Only when the 

Renderer is completely finished with its block of pixels are they written to the frame buffer. This 
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write-once strategy helps to reduce the I/O bottleneck that exists at the frame buffer. There may 

be up to 16 Renderers in a fully configured Pxpl5 system. 

The Pxpl5 frame buffer is built in a conventional manner from VRAMs and supports a 

1280x1024 display refreshed at 72 Hz with 24 bit true color, and a color lookup table. Two token 

ring nodes are allotted for the frame buffer. The host interface is via programmed I/O. 

Connecting the four other components is the ring network. It is an eight channel token ring 

with an aggregate transfer rate of 160 MWord per second (4 byte words). Access nodes are pro

vided for the Graphics Processors, Renderers, and frame buffer, each with a 20 MW per second 

bandwidth. In this ring network lies the primary bottleneck in the Pxpl5 architecture: it will only 

support a limited number of graphics processors and renderers, and it cannot be expanded. 

The Pxpl5 system has many good features working in its favor. Graphics processors are flexi

ble enough that they can implement virtually any graphics algorithm. This is in large part 

because the graphics processors are a plain vanilla MIMD computer. Also, since the renderers are 

programmable, a great amount of flexibility is maintained on the pixel level. Pxpl5 also enjoys the 
considerable convenience of being expandable in units of one renderer or graphics processor. 

Disadvantages include much degraded performance for shadowed polygons, a complex pro

gramming environment (heterogeneous parallel), and a serious scalability problem with the ring 

network. Although the fast radiosity technique is being developed for Pxpl5 and shows promise, 
the ray-tracing method will gain no benefit from PxplS's unique architecture. 

1.2.1.2 The Pixel Machine 

The Pixel Machine was developed at the AT&T Bell Laboratories in Holmdel, New Jersey by 
Michael Potmesil, Eric M. Hoffert, et. al. [Potmesil 89] It is a homogeneous MIMD image com

puter with a distributed frame buffer. Its applications lay in the areas of real-time simulations, 

volume rendering, ray-tracing, and scientific visualization. 

DSP32 Digital Signal Processors are used as the computing elements in this novel approach 

to parallel image computing. The DSP's are organized into two groups: a group of nine DSP's in a 

pipeline configuration (pipe nodes), and a 2D mesh of 16 - 64 processors to actually operate on 

pixel data (pixel nodes). Each DSP32 is capable of a maximum floating point performance of 10 

MFLOPS (5 MFLOPS of add plus 5 MFLOPS of multiply). 

The front-end pipeline of nodes is meant to perform operations that are intrinsically sequen
tial in nature. The input of the pipeline is fed by the Pixel Machine's host computer, and the last 

node in the pipeline may either send its data to all pixel nodes or back to the host. A second pipe

line of nine nodes may be added to the system to form two parallel pipelines, or one 18 node pipe

line. 

Pixel processors are connected to their four nearest neighbors in a closed torus network. 

These nodes are used for operations that are intrinsically parallel in nature. Each pixel node has 

an interleaved portion of the distributed frame buffer accessible to it. In other words, if we have 

processor {p,q) in an array of m xn pixel nodes, a processor-space pixel (i,j) is mapped to 
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screen pixel ( x , y )  by: * = m i + p ,  and y  =  n j  +  q .  This interleaved scheme is a very effective 

load balancing mechanism for many classes of parallel graphics algorithms [Fuchs 77, Parke 80, 

Carter 90]. 

There are several types of communication paths in the Pixel Machine architecture. Each pixel 

and pipe node is connected to a global VMEbus. This implements the host-to-node communication 
path. Pipe nodes are connected by FIFOs. There is also a serial asynchronous link between pipe 

nodes in the reverse direction of the FIFOs. Finally, there is the already-described connection of 

pixel nodes to their four nearest neighbors. 

One great advantage that the Pixel Machine enjoys is use of off-the-shelf components such as 

the DSP32. Furthermore, since it is a homogeneous parallel computer, the programmer enjoys a 
less complex programming environment. The Pixel Machine is remarkably flexible in its ability to 

implement new graphics algorithms due to its medium grain size. Finally, the distributed inter
leaved frame buffer approach chosen by the engineers scales by small increments. 

Disadvantages include a serial bottleneck in the form of the pipeline. Also, the Pixel Machine 
does not achieve real-time performance for any application listed due to its considerable overhead 

to start up an operation. Programmability has been traded off against absolute speed in this 

architecture. 

1.2.1.3 SGI Reality Engine 

Recently, Silicon Graphics, Inc. (SGI), introduced their third generation Geometry Pipeline 
architecture [SGI 92]. It is a dedicated, special-purpose, real-time, non-realistic rendering system 

which utilizes both MIMD and SIMD parallel processing paradigms to achieve the highest perfor

mance of any contemporary system. It has a rich functional capability, including; simple lighting 

models, smooth polygon shading, Z-buffering, advanced anti-aliasing, fog effects, and the most 

advanced texture-mapping capabilities available. 

The Reality Engine architecture has three major functional blocks. They are the geometry 

subsystem, the raster subsystem, and the display subsystem. The geometry subsystem utilizes 

eight advanced RISC microprocessors, operating in MIMD parallel fashion, to perform geometric 

coordinate transformations. Polygons with more than three vertices are decomposed into two or 

more triangles by the geometry subsystem, also. Only triangles are allowed because the next sub
system, the raster subsystem, is specifically engineered to render only triangles at high speed. 

The raster subsystem is composed of a proprietary arrangement of custom VLSI processors 

and memory to scan-convert triangles into pixel data and process them into the frame buffer. Five 

parallel Pixel Generator processors perform the scan-conversion of triangles into pixel data. This 

pixel data is then optionally routed through the texture processors for texture-mapping. Final 

pixel values are then stored in the frame buffer. 

Finally, the display subsystem takes pixel values from the frame buffer, and generates an 

analog video signal in any of several standard formats, including two HDTV formats. 
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1J2.2 Ray tracing 

1.2.2.1 LINKS-1 

The LINKS-1 system was developed by Hiroshi Deguchi et. al. at Osaka University, Suita, 

Japan [Deguchi 86]. It was developed specifically to perform high-speed ray tracing. LINKS-1 

uses a loosely coupled set of microcomputers, divided into functional groups, to carry out ray trac

ing. 

The LINKS-1 architecture is in the form of a binary tree of processors. These processors are 

divided into two logical groups: Node Computers and Leaf Computers. Node Computers make up 

the body of the tree, and the Leaf Computers perform the actual ray tracing. Node Computers and 

Leaf Computers are connected in a tree structure by the Intercomputer Memory Swapping Unit. 

This device is able to swap a block of memoiy between a pair of connected nodes. Node Computers 

and Leaf Computers are collectively called Unit Computers. Frame buffer data is taken from the 

Leaf Computers by the Data Collector mechanism and concentrated into the frame buffer for dis

play. The Data Collector represents another potential serial bottleneck in the LINKS-1 system. 

Input to the LINKS-1 system consists of a potentially large database of geometrical primitives 

which comprise a scene to be ray-traced. This database of objects is distributed to the Node Com
puters and Leaf Computers via the node computers. Note that for even modest object database 

sizes, each Unit Computer will be able to store only a portion of it. Thus, a large part of the overall 

architecture is devoted to efficient sharing of the object database among the Leaf Computers. 

Only the Leaf Computer perform the actual ray-tracing algorithm. 

LINKS-1 could be programmed for an image synthesis algorithm other than ray-tracing due 

to the flexibility and programmability of its Unit Computers. One would expect it only to achieve 

results similar to that of the Pixel Machine for other graphics algorithms, however, due to the 

similarity in grain size and frame buffer characteristics between the two systems. 

Again, in the LINKS-1 architecture, we see a serial bottleneck that ultimately limits the 

whole system's performance. LINKS-1 has the distinction of two serial bottlenecks; one at the root 

of the Data Distributor tree, and one at the frame buffer caused by the Data Collector. Further
more, the LINKS-1 system does not nearly run at interactive speeds, although it does show signif

icant speedup over previous ray-tracing implementations. 

1.2.2.2 Hypercube Ray Tracer 

The Hypercube Ray Tracer is a collection of programs developed for the Intel iPSC/2 parallel 

computer [Carter 89]. It provides common geometric primitives, and an easy-to-use scene descrip

tion language. Its most important contribution is in the handling of very large object databases. 

When one wishes to render a scene containing many thousands of primitives at high speed, one 

encounters a problem early on when dealing with MIMD parallel computers—limited node mem

ory. The naive approach to ray tracing on distributed memory parallel computers has been to 

duplicate the object database on all processors. With a large object database, there is insufficient 

memory on eveiy node for this duplication. An object caching scheme is implemented in which the 
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object database is distributed to permanent "home" locations across the nodes, and copies of 
objects shuttled between nodes as needed. Since there is a high degree of spatial and temporal 

coherence in the object database access patterns, this scheme is very effective at dealing with 

large object databases. 

Ray tracing is, at first blush, a trivially parallel application. However, the issues involved 

with large object databases and load balancing make the problem nontrivial. The hypercube ray 

tracer deals effectively with these problems and achieves high performance and reasonable scal

ability at the same time. Load balance is ensured by a master-slave arrangement where a single 

controlling processor assigns small portions of the image plane to worker processors. When a 
worker finishes rendering a block of pixels, they are shipped back to the master processor, and a 

new block of pixels on the image plane is assigned to the worker. These pixels blocks are assigned 

in a spatially coherent manner to improve the effectiveness of the object database caching scheme. 

1.2.2.3 Other work 

Others have also mapped the ray tracing algorithm to various existing general-purpose paral
lel architectures [Badouel 90, Priol 88, Priol 89, Hermitage 90]. 

1.2.3 Radiosity 

Much less work has been done toward applying parallel processing to radiosity solutions. 

Efforts to date include [Chen 89, Drucker 92, Guitton 91, Purgathofer 91]. 

One parallel implementation of a radiosity solver on a parallel machine is the SLALOM 

benchmark [Gustafson 91]. SLALOM is an acronym for Scalable Language-Independent Ames 

Laboratory One-minute Measurement. It is a fixed-time benchmark which attempts to capture 

general salient features of scientific computing. A radiosity problem is solved in a right rectangu

lar box to a specified precision. A computer is tasked with solving the largest problem it can, mea

sured in patches, in less than one minute. The problem size, rather than time, is used as the 

figure of merit for the benchmark. 

SLALOM has been ported to run on the following parallel and massively parallel systems: 

nCUBE 2, MasPar, Intel, Cray, SGI, Myrias, etc. Since the kernel operation of the first version of 
SLALOM was a dense matrix solver, speed was uniformly high on all parallel machines [Slalom 

90]. We will later show this algorithm to be horribly wasteful in terms of the amount of work per

formed to arrive at a given solution. 

1.3 Structure and Aim of This Dissertation 
This dissertation tracks the research, development, and implementation of a state-of-the-art, 

parallel hierarchical radiosity renderer. An analysis of the standard radiosity equation, and meth

ods for solving it, is performed in Chapter II. This analysis shows several interesting things about 

the development of radiosity solution techniques. It also discloses a previously unexploited sym

metry in the linear system of equations. The implications of the new-found symmetry are dis

cussed, and an algorithm is put forward to take advantage of it. 
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Next, in Chapter III, the new hierarchical methods are described as applied to computer 
graphics and other scientific disciplines. The two existing hierarchical radiosity methods are 

reviewed, and commentary made. An effort is made to identify the properties of a physical prob

lem that make it amenable to a hierarchical method of attack. 

Chapter IV discusses shortcomings and inconsistencies in the existing methods. Several new 
improvements to the hierarchical radiosity methods are laid out and discussed. Results from a 

serial implementation of the new algorithm are discussed and analyzed and compared against 
existing results. 

The new method is examined for sources of parallelism in Chapter V. Sources of parallelism 

are identified, and decomposition strategies chosen for implementation on an nCUBE 2 parallel 
computer. Performance and efficiency of the parallel implementation is discussed, together with 

ways of further improving it. 

During the course of this research, many ideas sprang to mind for which time was not avail

able for further pursuit. Many of theses future research possibilities are discussed, and a brief 
summary of work performed is given in Chapter VI. 
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CHAPTER II 

SYMMETRIC RADIOSITY 

2.1 Introduction 
A new formulation of the radiosity equation is developed which has as its linear equation coef

ficients a symmetric matrix, rather than the non symmetric matrix in all other radiosity papers to 

date. Such a reformulation has considerable computational advantages, among which are that 

storage for the form factor matrix is reduced by half and that the more sophisticated Conjugate 

Gradient solution technique can be brought to bear on the problem. Jacobi, Gauss-Seidel, "Shoot

ing", and Conjugate Gradient solvers are compared by operation count and experiment. The 

method of Conjugate Gradients is shown to be uniformly superior to the other solver types, with 

its advantage becoming overwhelming in highly reflective environments. One may observe that 

the historical evolution of iterative solvers for radiosity problems seems to have increased the 
solution time, not decreased it. 

The formulation of a physical problem is often made to look as simple as possible from a sym
bolic viewpoint, without regard for computational issues. Since the theory of radiosity predates 

high-speed computing, its usual formulation is conceptually terse, but computationally wasteful. 

A major oversight in the analysis of the radiosity problem is pointed out in this chapter, and its 

implications with regard to storage requirements and the selection of a fast solution strategy. 

To date, the methods used to solve the radiosity equation have been taken strictly from the 

backwaters of computational mathematics. Much more sophisticated methods exist than the anti

quated Gauss-Seidel iteration (of which shooting is a subtle variant), and should be exploited. In 

most areas of computational mathematics, an effort is made to find a way of making a problem 

symmetric; the radiosity problem formulation has stayed non symmetric in the literature ior eight 

years. 

Nowhere has the performance of multiple solver types been objectively compared for the radi
osity problem. Arguments are presented here based on operation counts and convergence rates. 

The conclusion is drawn that solvers appear to have actually gotten slower over time. 

With the advent of new hierarchical radiosity methods [Hanrahan 91, Smits 92, Carter 93b], 

the time spent solving for patch radiosities has become more significant. Until recently, the major

ity of time in a radiosity rendering was spent calculating form factors. The new hierarchical meth

ods approximate form factors only to the accuracy needed, thus saving time and magnifying the 

role of the solver. 
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2.2 Existing Methods 
Since its introduction to the computer graphics community in 1984, the radiosity equation has 

been presented in a form similar to the following [Goral 84]: 

N  

^ J  =  (7) 
i= I 

where: bj is the brightness (radiosity) of patch j in W/m^, 

Bj is the emittance of patchy in W/m^, 

py is the reflectance of patchy, 

Fjj is the form factor from patch i to patch7, and 

N is the number of patches. 

Equation (7) may be rewritten in vector-matrix notation in the following way: 

b = e + PFb (8) 

where: b, e are the brightness and emittance vectors, 
P  =  d i a g ( p j ) , and 

F is the form factor matrix. 

Equation (8) may be arranged into the form of a system of equations to be solved: 

( I - P F ) b  =  e  (9) 

where I is the identity matrix. 

I - P F  is nonsymmetric in general because Equation (9) was initially solved in a 

direct fashion using dense LU factorization and backsubstitution with partial pivoting [Goral 84]! 

It was later shown that (I-PF) is diagonally dominant, and thus amenable to a number of iter
ative solution methods. Pivoting, certainly, is unnecessary unless patches exhibit fluorescence and 

thus have reflectivities greater than unity. The first iterative method to be applied to the radiosity 

equation was the Gauss-Seidel technique [Nishita 85, Cohen 85]. Gauss-Seidel and its close rela

tive, Jacobi iteration, remained popular for a number of years [Immel 86, Cohen 86]. 

The method of "Shooting" was then developed to progress smoothly toward the final solution. 
In the following discussion, we will assume the shooting, sorting, and ambient version of "progres

sive radiosity" found in [Cohen 88]. Shooting offered the chance for quick gratification by produc

ing an image of acceptable quality quickly, and then proceeding toward the final solution more 

slowly. The price one pays for this progressive radiosity approach, in its original form, is: 

• Recalculation of form factors for a patch every time it is visited. 
• 0(N) work between every update to find the patch with the largest un shot radiosity. 
• 50% more memory references for the solution update itself 
Note that recalculating the form factors for each patch is only necessary if one does not wish 

to store the full coupling matrix. In the sequel, we will store the coupling matrix in the interest of 
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fairness. While this is appropriate if the user wishes to quickly see a rough rendering, it is not 
appropriate if only the final solution is needed. 

2.3 Reformulating the Radiosity Equation 
We begin with equation (9), and define the diagonal matrix A = diag^A^) where A,- is the 

area of patch i. 

( I - P F ) b  =  e  

Now, multiply through on the left by the patch areas. 

( A - A P F ) b = A e  (10) 

Multiplication of diagonal matrices is commutative, so interchange A and P ,  giving 

{ A - P A F ) h = A e  (11) 

Finally, multiply through on the left by P"' to yield the final form. 

{ P - ^ A - A F ) h  =  p - ^ A e  (12) 

Now, from the definition of form factors, we have the reciprocity relation, A,.Fy = AjFji. This 
relation says, among other things, that the product AF is a symmetric matrix. Furthermore, since 

P~^ is a diagonal matrix, the product P"'A is also symmetric. Therefore, the whole term 

(P~^A - AF) is symmetric. Equation (12) is the formulation used in SLALOM since its introduc

tion as a benchmark in 1990 [Gustafson 91]. 

It has been shown that the radiosity problem can be reformulated as a symmetric system of 

equations. Discussion of appropriate solution strategies in light of this new observation follows. 

2.3.1 Coupling factors 

Equation (12) suggests a way to modify the definition of coupling between two patches such 

that the coupling from patch i to patchy is identical to the coupling fromji to t. The traditional def

inition of the form factor from patch i to patch j is: 

1 f r cosé.cosi)),. 

where: (t).and(fK are the angles between surface normals and ry, and 

r^j is the vector from one differential area element to another. 

The form factor was originally conceived this way because it was thought of as an area-aver

age of differential point-to-area form factors. This quantity is not symmetric with respect to i and 
j. The product AF simply serves to undo the unneeded division by A, in the form factor definition. 

We define: 

.  .  COS(t).COS<t),. 

=  j j  '-T-^dA,dAj 
A.A.  ^ ' ' i j  

(14) 
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Let us call Cij the coupling factor between patches i and J. This quantity is conceptually sim
pler to deal with because it is symmetric with respect to i and/ Since a coupling factor has units 

of area, it also has the convenient property that when multiplied by a radiosity value, it gives 
energy impinging on the coupled-to patch directly. Thus, equations written using the coupling fac

tor matrix C are energy balance equations, not energy density balance equations. Equation (12) 
can be simplified to: 

( P - ^ A - C ) b  =  p - ^ A e  (15) 

2.4 Solution Techniques 
Now that there is a symmetric system to solve, a number of new options are open. Direct solu

tion methods may still be used, but iterative methods are more effective. 

2.4.1 Direct solution 

Cholesky factorization ( L D L ^ )  rather than L U  factorization may be used. This cuts the solu
tion time, number of operations, memory references, and memory use in half when compared to 

LU factorization. Cholesky factorization, however, is still O(N^) in the number of equations 
(patches). 

Most researchers have recognized that the solution to a radiosity problem is seldom needed 
(or correct, in any realistic sense!) to more than three or four decimals. Even if the solution to a 

radiosity problem were needed to fifteen or more decimals, direct methods would lose for some 

value of N. This has been proved based on a condition number bound [Bjorstad 91b]. Even for 

highly-reflective scenes, iterative methods will win for only a few hundred patches. Cholesky fac

torization, like LU, is therefore of little more than academic interest for radiosity problems. 

2.4.2 Simple iterative techniques 

Jacobi iteration, Gauss-Seidel iteration, and Shooting are all still possible with the symmetric 

formulation. The advantages of the symmetric system, however, are more modest than for direct 

solution. Storage space for the matrix of coefficients is still cut in half, but the number of opera
tions per iteration for these schemes remains the same. For the following analyses, the symmetric 

radiosity equation (12) is rewritten as: 

(D + S)X'=v (16) 

Where: D is the diagonal matrix P'^A, 

S is the symmetric matrix -AF, 

X is the solution estimate to b, 

V is the right-hand-side P'^Ae. 

Usually, the matrix S will have some degree of sparsity caused by coplanar patches, occluded 

patches, or patches facing away from one another which have zero coupling (patches which cannot 

"see" one another.) 
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2.4.2.1 Jacobi iteration 

The simplest iterative scheme we consider here is the Jacobi iteration. This iteration updates 
all solution variables as a batch. It can be written as follows in algorithmic form: 

6 = 0, m = Sxq 

do { 

X  =  - D ' ^ m  +  V  
m = Sx 

r  =  m  +  D x - v  {Residual} 
) while (l|r|L>E| |Z? + SILl | i |L) 

Algorithm 1: Jacobi iteration 

An examination of Algorithm 1 reveals that it takes 2N^ + 4N floating-point operations per 

iteration plus - 3N floating-point operations for setup. Note that in the preceding operation 

counts, multiplication, addition, and subtractions is counted as one floating-point operation and 

divide and square root are counted as four. It is guaranteed to converge for diagonally dominant 
systems, and its convergence rate is related to the spectral radius of p(D"'S). The closer 

p (D~^S) is to zero, the more quickly Jacobi iteration converges. A small p corresponds to scenes 
with dark surfaces. 

2.4.2.2 Gauss-Seidel iteration 

Slightly more complicated is the Gauss-Seidel iteration. Instead of updating all variables as a 

batch, it updates one at a time, and then uses the value just computed when updating subsequent 

variables. It can be written as shown in Algorithm 2. 

A = 0 
do { 

for i = 1 to N 
a = Xi 

N J * i  . 
" i -  E  

j = i  
r,- = d,-(:c,-- a) {Previous resid. ) 

) while (l|r|L>E| |Z) + S|Lll*|L) 

Algorithm 2: Gauss-Seidel iteration 

Algorithm 2 is a slight variant on Gauss-Seidel that evaluates the residual from the previous 
iteration. Although this different residual check will cause Algorithm 2 to proceed one too many 

iterations, it cuts in half the amount of 0(N^J work. Algorithm 2 requires 2N^ + 3N floating-point 
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operations with no setup overhead. Gauss-Seidel has a convergence rate that is related to 
p( (D + L)~'L^), where L is the lower triangular part of the symmetric matrix S. 

2.4.2.3 Progressive radiosity (shooting) 

The method of "Shooting" is a variant on the Gauss-Seidel iteration proposed by Cohen 
[Cohen 88]. It progressively redistributes "unshot radiosity" through the scene according to which 

patch has the greatest amount of unshot radiosity accumulated. 

At each step, the patch in the scene with the greatest amount of unshot radiosity is selected. 

The unshot radiosity belonging to this patch is redistributed to all other patches in the scene, 

updating their solutions and unshot radiosities. This process is repeated until convergence is 
reached. 

An added optimization is also formulated to deal with ambient light in the scene. A constant 

radiosity is added to all patch radiosities in the scene in an attempt to reduce the RMS error in 

the answer at each step. The Shooting algorithm can be expressed as follows: 

Algorithm 3 takes 6//^ + 3N operations per iteration. Unlike Jacobi or Gauss-Seidel, there is 

no way to reuse the operations in the kernel to compute a residual. Therefore, a separate step 
involving 2iV^ operations is necessary to calculate a true residual. Other convergence tests, such 

as the largest unshot radiosity or the difference between two consecutive solution estimates, could 
be used, but they are subject to catastrophic failure. In a highly reflective scene, the true solution 

is approached slowly, and an ad hoc convergence test might terminate the iteration prematurely 

while still far from the desired accuracy (even to the human eye!). Note that the human eye tends 

to forgive gross global illumination errors, while emphasizing small local errors. Since Shooting 

updates the solution variables in a data-dependent order, a convergence analysis is difficult. 

Experimental comparison will be presented in the section titled "A Practical Comparison" on 
page 21. 

2.4.3 Other iterative techniques 

Various schemes exist for accelerating the convergence of methods such as Gauss-Seidel, such 

as symmetric successive over-relaxation (SSOR), and the Chebyshev Semi-Iterative method. Both 
of these methods, however, assume that certain acceleration constants are available or comput

able at solution time. In general, the optimal values for these constants are difficult to obtain 
except for certain structured problems. 

As there is little structure in the general radiosity matrix, determining optimal values for the 

acceleration constants is probably more expensive than a non-accelerated solution technique. This 

is because it would require an eigenvalue analysis which is as difficult a problem as the solution 

itself. If the values for the acceleration constants are sufficiently wrong, then, the "accelerated" 

solution may proceed more slowly than the unaccelerated version. A large literature exists for 

estimating the acceleration constants, but we have not chosen to pursue such an analysis. In the 
next section, we will show that the method of conjugate gradients is both simple and fast, and 

have concentrated our efforts there. 
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X = V {First guess solution) 

A* = V iUnshot radiosity) 
N 

T = (Total area) 

1 = 1 

1 " 
pgu, = -P/^,' {Average reflectivity) 

1 = 1 

R = {Interreflection factor) 

do { 

for k = 1 to i V  

Select i s.t. Ax^ is maximal 

for y  =  1  to N ,  f / j .  
A r a d  =  { p j A X j S i j ) / A j  

AXj = Axj + Arad 
Xj = Xj+ Arad 

AXi = 0 

R ^ Aambient = — ^ Ax jAj {Ambient light) 
J° 1 

for y = 1 to N {Improved sol'n) 
nij = Xj + PjAambient 

r = {D + S)m-v {Residual) 
) while ( l l r l L>E | | I >  +  S | L l l m l L )  

for ; = 1 to N 
Xj = Xj + PjAambient 

Algorithm 3: Shooting with sorting and ambient 

2.4.4 Method of conjugate gradients 

An important implication of the symmetric radiosity equation is the ability to apply more 
sophisticated methods to its solution, such as the method of conjugate gradients [Golub 89]. This 

method was first applied to the SLALOM benchmark by Bjerstad and Boman [Bjorstad 91a]. 

They prove that, given bounds on the maximum reflectivity in the scene 1), the CG 

solver will always be better than a direct solver as N grows large [Bjorstad 91b]. 

The method of conjugate gradients (CG) is not actually an iterative method, but a way of sys

tematically constraining the solution in residual space. This powerful method exploits the direc

tion in which the solution estimate changes in N-space to choose a better path toward the 

solution. Furthermore, it is guaranteed to converge to the exact solution inN iterations (assuming 
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exact arithmetic), where N is the number of unknowns. In practice, however, CG converges too 
quickly to be allowed to proceed for jV iterations. 

The convergence rate of the conjugate method is related to the condition number of the matrix 
being iterated upon. The closer the condition number is to unity, the more quickly the method con

verges. Preconditioning is a way of accelerating the conjugate gradient method by solving a simi

lar problem whose condition number is closer to unity. We have chosen to use a simple diagonal 

preconditioner with our CG algorithm. 

k = 0, X = 0, r = V 
do ( 

2 = £>-'r 
T 

Y, = r'z 

if k = 0 then 
P = 0 

else 

P = Y/Yo 
end if 

p = 2 + Pp 

p ^ ( D  +  S ) p  

X = x + ap 

r = r-a(,D + S)p 
YQ = Y, 
k = k + 1 

] while (l|r|L>e||D + S|Ll|ic|L) 

Algorithm 4: Preconditioned conjugate gradients 

Algorithm 4 takes 2N^ + 15N floating-point operations per iteration with no setup overhead. 

As with Jacobi iteration, only one matrix-vector multiply is needed per iteration. 

2.5 A Practical Comparison 
An early version of the SLALOM benchmark has been modified in order to objectively evalu

ate the effectiveness of various solution methods. The original SLALOM benchmark solves a radi-
osity problem in a six-sided, right, rectangular box. This type of simple enclosure is sometimes 

called a "Cornell box" in honor of the landmark paper [Goral 84]. Each face may have different 

reflectivity and emissivity, and is subdivided into a regular grid of subpatches in order to more 

accurately capture the change in light intensity across the face. 

Jacobi, Gauss-Seidel, "Shooting," and Conjugate Gradient solvers are implemented, and their 

results presented. The Cornell box used for this experiment is 13.5 by 9 by 8 units, with area-

weighted average reflectivities ranging from 0.372 to 0.902. Some explanation is in order here for 
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exactly what is meant by an "iteration" with respect to Shooting. In CG, Jacobi, and Gauss-Seidel, 
an iteration means an update to each variable in the system. For purposes of comparison, one 

iteration of Shooting is defined to be N solution updates, whether they are different variables or 
not. This gives a uniform scale of comparison for all three methods, and does not penalize the 

Shooting method. 

Table 1 summarizes the number of floating-point operations per iteration for each of the four 

solver types implemented in terms of the number of variables, N, Every effort was made to fairly 

assess each algorithm's requirements, and tune them so that no operations were wasted. 

Table 1: Opcount metrics of various solvers 

Solver Type Operations per Iteration 

Jacobi 2N'^ + 4N 

Gauss-Seidel 2N'^ + 3N 

Shooting 6 N ^  +  3 N  

Conjugate Gradient 2N'^+15N 

Figure 2 presents the number of iterations each of the solver types required to converge for a 

range of problem sizes. The convergence criterion was four decimals of relative accuracy. Great 

care was taken to ensure that each solver used exactly the same convergence criteria so compari

son of iteration counts would be fair. Convergence curves for four and eight decimals of accuracy 

are presented, although only the four-decimal plot is of practical interest. 
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Figure 2: Solver iteration counts 

One will immediately notice from Figure 2 that the numbers of iterations of Conjugate Gradi
ent and Shooting required for four decimals of accuracy are comparable. Data from Table 1, how

ever, puts this in a different light. A small number of iterations is not the measure of goodness for 

a solution technique, but rather the time it takes to solve a given system. The shooting method 
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requires three times the number of floating-point operations per iteration that conjugate gradient 

does! Thus, Shooting will take about three times as long to converge as CG even if their conver

gence rates are the same. Later, it will become apparent that CG has a much faster convergence 
rate than Shooting. 

Total solution time for the three solvers on various problem sizes is shown in Figure 3. The CG 

solver can be seen to be approximately five times faster than Shooting for this problem. Collected 
in Table 2 are timing comparisons of Jacobi, Gauss-Seidel and Shooting against Conjugate Gradi

ent for a variety of geometries and average reflectivities. The problem size is 1000 patches in each 

case. The results show that CG is superior to Jacobi, GS and Shooting for all configurations 
tested, with its advantage becoming overwhelming with higher average reflectivity. Thus, the con

vergence rate for CG is relatively unaffected by the average reflectivity of the scene, while GS and 
Shooting suffer badly with increasing reflectivity. 

SLALOM Solver Time vs. Patches 
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Figure 3: Solver time 

Table 2: Solver comparison for various geometries on 1000 patches 

Geometry (Cornell Box) Average p 
"^JAC 

'^CG 

^GS 

^CG 

^Shoot 

^CG 

0.411 1.21 1.21 3.84 

10 X 10 X 10 
0.617 1.75 1.63 5.05 

10 X 10 X 10 
0.738 3.08 2.56 10.67 

0.893 6.98 5.70 20.15 

0.444 : 1.32 3 44 

13.5 X 9 X 8 
0.659 V:1.91 -••••;:• 181 / 6.19 

13.5 X 9 X 8 
0.760 3.03 2.67 11.66 

0.895 7.06 5.79 25.49 
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Table 2: Solver comparison for various geometries on 1000 patches (cont'd) 

CJeometry (Cornell Box) Average p ^JAC 

^cc 

^GS ^Shoot 

^CG 

2 x 2 x  1 0  

0.372 1.06 1.24 1.86 

2 x 2 x  1 0  
0.543 1.28 1.35 2.60 

2 x 2 x  1 0  
0.690 2.10 1.95 5.74 

2 x 2 x  1 0  

0.902 5.34 4.61 16.23 

Another striking observation can be made from the data in Table 2. The performance of each 
solver type is exactly the opposite of that which would be implied by historical usage! Early radi-

osity papers used Jacobi iteration to solve their systems. Work then proceeded to Gauss-Seidel 
iteration, and Shooting methods. Apparently, the added complexity of the more sophisticated iter

ative schemes more than offset any gains that might have been made by improved convergence 

rates, thus increasing the solution time! Perhaps the choice was driven by apparent image quality 
instead of analysis of the error. 

It is interesting to note that the original formulation of the Shooting technique attempts to 

take specific advantage of average reflectivity to compute a uniform, ambient illumination. This 

ambient term is added to the solution estimate at each iteration to give an improved solution. 

Even this specific optimization does not help the Shooting technique cope well with highly reflec

tive environments. Indeed, the Shooting technique seems to work best for dim scenes with low 

average reflectivity—a situation where radiosity methods are not called for at all! 

2.6 Applicability to Hierarchical Methods 
With the advent of the hierarchical radiosity algorithm [Hanrahan 91], new areas of investi

gation are open. Hanrahan et al. promote the use of the Shooting method for solving a hierarchi

cal system. They justify this by pointing out that each patch is linked to 0(1) other patches in the 

scene, and therefore a shooting step is very little work. 

Although this is true, the conjugate gradient algorithm can benefit just as much from the 

hierarchical nature of the problem; the matrix-vector multiply kernel of CG can be performed in 

0(.N) time instead of 0{N^) time. The convergence properties of these two methods will be the 

same regardless of whether the matrix is represented densely or hierarchically. 

Hierarchical matrix-vector multiply takes 4 k N  +  1 2 N  floating-point operations, where n is 

the number of leaf patches in the hierarchy, and k is the average number of links per patch. Expe

rience has shown us that k is typically about 10. Reanalyzing operation counts for Algorithm 1 

through Algorithm 4 gives us Table 3, 

Table 3: Operation count metrics for various hierarchical solvers 

Solver TVpe Operations per Iteration 

Jacobi 4 k N + 1 9 N  
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Table 3: Operation count metrics for various hierarchical solvers 

Solver Type Operations per Iteration 

Shooting 8 k N +  1 5 N  

Conjugate Gradient 4 k N  +  2 5 N  

Once again, we see CG and Jacobi tied for the least number of operations per iteration. Know

ing that the convergence rates of the various solvers are unchanged, we may conclude that CG 

would once again be the method of choice. 

2.7 Summary 
We have shown how the diffuse radiosity problem can be reformulated in terms of a symmet

ric system of linear equations. All previous formulations of the radiosity problem have been non-
symmetric, and thus, could not benefit from decreased storage requirements, decreased memory 
references, and advanced solution techniques. 

The method of Conjugate Gradients has been applied to a Cornell box radiosity problem, and 

its performance compared to that of the progressive radiosity Shooting technique, Gauss-Seidel 

iteration, and Jacobi iteration for a variety of geometric configurations and average reflectivities. 

The Conjugate Gradient technique is uniformly superior to all three other methods, with its 

advantage becoming very pronounced in scenes with high average reflectivity. 
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CHAPTER III 

HIERARCHICAL METHODS 

3.1 Introduction to Hierarchical Methods 
A hierarchical algorithm is one which exploits a pre-specified accuracy criterion to reduce the 

amount of calculation in the solution of a problem. The method will solve at multiple resolutions 

to avoid excess work on coarse resolutions, and thus reduce the total amount of computational 
work. 

This chapter's purpose is twofold. First, the overall philosophy of hierarchical methods is 

explored and discussed. Then, in order to motivate the previous discussion, five examples of hier

archical methods are discussed in modest detail. Two of these algorithms are hierarchical radios-
ity algorithms—the only two in the literature. The other three are astrophysical N-body 

simulation programs. 

3.2 Hierarchical iV-body Methods 
Hierarchical methods, as defined here, started with an improved algorithm for calculating the 

total forces acting on a set of mutually gravitating bodies or particles [Appel 85]. This type of 

problem, called the N-body problem, is of intense interest in cosmology where there exist many 

open questions about the state of the universe such as, "Is the universe open or closed?" lb con

duct meaningful theoretical experiments, simulations of thousands or even millions of gravitating 

bodies (particles) must be modeled. A brute-force algorithm for calculating the exact force on each 

particle consumes 0(.N^) time. This is because all N particles in the system interact with the other 

N-1 particles in a non-trivial manner. 

3.2.1 Appel's JV-body algorithm 

Appel proposed a method which approximates the gravitational interaction between two par

ticles, a single particle and a distant clump of particles, or between two distant clumps of particles 

[Appel 85]. By only computing the force on a particle or clump to a specified level of accuracy, and 

applying this clumping recursively, the time complexity of the calculation was reduced. A proof of 

this time complexity was not provided, but a conservative argument was given by Appel to sup

port a time complexity of 0(N log AO. 

3.2.1.1 Bounding the interaction error 

The gravitational interaction between a particle and a clump of particles can be approximated 

by regarding the clump of particles as a single point mass. This is called the monopole approxima

tion. Consider the arrangement shown in Figure 4. Two point masses and are shown 

together with an "observing" particle, o. The two point masses are no further than \dr\ from their 
center of mass, c. The acceleration on the observing particle o may be written as 
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Observing 
particle d r ,  dr 

dr, 

Figure 4: Monopole approximation 

Theorem: The monopole approximation, (17), correctly estimates the force on a single observing 

particle due to two other particles to within 0(|c(r|^). 

| r  +  d r j ®  j r  +  d r g l ^  | r | ^  

Proof: The center-of-mass of the system in Figure 4 satisfies, 

m , r f r ,  +  m 2 d r 2  =  0 .  ( 1 8 )  

We will use the vector form of Taylor's formula, 

/•(afo +  f e )  = /"(aro)+/t •  V/"(arg)+0( l /i|^) , (19) 

in the sequel. First, we form the Taylor series expansion, 

We now use (20) to expand the middle term of (17), 

a rn^r 3m^r(dr^-r) m^dr^ Zm^dr(,dr^ • r) 
+ 0(|dri|2) 

+ T 7 3 - '  '  ' + o ( W ) .  ( 2 1 )  

G Irl" Irl® Irl" |r|® 

mor (dr, - r) m^dr^ Smodridr^-r) '2' ""'2' I '"2"-'2 "'"2"' '' , ,2\ 
|r|^ |r|® |r|® |r|' 

By (18), we may eliminate terms 3 and 8 from (21). Terms 2 and 7 may also be eliminated using 
(18). Also, terms 4 and 9 are of 0 (Idrl^), therefore, 
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G ( m i  +  m 2 ) r  
+ 0(|dr|2) I 

Thus, the monopole approximation can be used to approximate the acceleration on a particle due 

to a clump to within order \dr\^. Similarly, the acceleration on eveiy particle in a clump due to 
another clump may be approximated to within order (|dr|/|r^,.^|)^, where is the minimum 

distance between the two clumps. 

3.2.1.2 The algorithm 

The first step in executing Appel's fast N-body algorithm is to construct a binary k-d tree 

above the N given particles. This has the effect of spatially clumping nearby particles into adja

cent subtrees. Interior nodes are tagged with the center of mass for all particles in the subtree. 

Interior nodes also contain the radius of a sphere which will enclose all particles in the subtree. 
Thus, clump-to-clump interactions are equivalent to applying the monopole approximation 

between two interior nodes in the tree. Appel gives the following algorithm for computing the 

acceleration on all particles in the system. 

Algorithm 5 traverses the hierarchy of particle clumps, and evaluates acceleration contribu

tions at the first place where the error criterion is satisfied. Note that if S is set to zero, the TwoN-

ode procedure recurs all the way down to the leaf level, and calculates all interactions. If S is 

sufficiently greater than zero, then recursion will terminate before reaching the leaf level, and cal

culations will be saved. The approximation made at this higher level will be accurate to a relative 

accuracy of 0(6). 

3.2.1.3 Analysis of time complexity 

Suppose a particle X is surrounded with a series of spherical shells as shown in Figure 5. A 

shell of inside radius r is defined to have a thickness of ô • r. Consider one of these shells of radius 

r and thickness 5 • r. The shell is filled with clumps of diameter S • r. All these clumps satisfy the 

error criterion set forth above. The number of such clumps that may be placed in the shell is 

r ( l  +  5 ) 3  r 

Figure 5: Shell structure about X 
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{ Compute all acceleration contributions for ) 
{ all nodes in the tree rooted at clump B. ) 
ComputeAccel(B) 
{ 

if B is a nontrivial clump | 
ComputeAccel 

ComputeAccel {Bright) 

T w o N o d e O i e f t r  B r i g h t )  
) 

I 

( Compute the gravitational interaction between ) 
I clumps A and B. If A and B do not satisfy the ) 
I error criterion, proceed further down tree. ) 
TwoNode(A, B) 
( 

d = vector from A to B 
d = magnitude of d 
dr;̂  = diameter of sphere around clump A 

drg = diameter of sphere around clump B 

if (dr^/d > 5) and (dr^ > drg) t 

TwoNode (A^eft/ B) 

TwoNode (Aright/ B) 

I 

else if (drg/d > Ô) ( 

TwoNode(A, Bjeft) 

TwoNode (A, Bright) 

1 
else { 

Accft = Accft + Gmgd/d^ 
Accg = Accg - Gm^d/d^ 

) 

) 

Algorithm 5: Computing accelerations hierarchically 

This follows by projecting the clumps' silhouettes onto the surface of the shell. The shells about X 
are arranged so that the expected number of particles inside the smallest sphere is 1, and the 

expected number of particles inside the largest sphere isN, the number of particles in the system. 

The radius of the smallest sphere is defined to be r. Therefore, the radius of the largest sphere 

will be r ( 1 + S) * for some k e I. Assuming a uniform distribution of particles through space, the 

expected number of particles that a given sphere will enclose is directly proportional to its vol

ume. Therefore, the ratio of the radii of the largest and smallest spheres will be 
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'"largest 471 J 

4n J ,  

1/3 

= (^)''^ = (23) 

This ratio of radii may be derived another way by using the sizes of the shells: 

= (1 + 5)*. (24) 
''bribUCSI '* 

Equating the right hand sides of (23) and (24), we obtain the following: 

=  ( 1  +  6 ) *  

|logN = Élog(l + S) 

k = logN (25) 
31og(l + ô) 

the number of shells. Next, the number of floating-point operations (flops) necessary to update 
particle X is proportional to the number of shells times the number of clumps per shell times the 
number of flops for one clump, which is (25) times (22): 

flops _ logTV 4 _ 4logN 
update Slog(1 + 6) gz 36^1og(l + 8) ' 

Note that the number of clumps per shell in (22) is independent of the radius of the shell. Finally, 

all N particles in the system must be updated in accordance with (26), so the total number of oper

ations necessary to update all particles in the system is bounded from above by, 

assuming a constant 6, the measure of precision. 

The complexity bound given in (27) is conservative because in reality, Appel's algorithm does 

not evaluate the acceleration on all particles one at a time. Rather, there are clump-to-clump 
interactions which take the place of many particle-to-clump interactions (refer to Algorithm 5). 

A less conservative argument would involve analyzing the update of all N particles at once, 

not just one at a time. Consider all the interactions computed in Algorithm 5. An interaction is 

computed between two clumps only when the ratio dr/r is of order 6. If the ratio were larger, fur

ther recursion would have taken place in the TwoNode procedure, and two or more interactions 

with smaller ratios would have been computed. The ratio will never be smaller than 0(6) because 

the interaction would have been computed at a higher level, with a correspondingly larger ratio of 

dr/r. Thus, by (22), there are a constant number of interactions between a given clump, and 

clumps of the same size. Stated another way, there are a constant number of links to other clumps 

or particles at every node in the hierarchy. The total number of nodes in a binary tree of N parti-
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des is 2A^- 1. Therefore, the total amount of computation involved in updating all particles is 
k (27V- 1), or 0{N). It is startling that this argument was not given in either [Appel 85] or [Bar

nes 86]. It appears Appel was first to discover the 0{N) method, but was not so credited because 

his proof was conservative. Greengard later proved 0{N) behavior for a slightly different 

approach. 

3.2.2 Barnes and Hut's N-body algorithm 

A variation on Appel's algorithm uses a spatial octree, rather than Appel's k-d tree, to parti

tion particles into clumps [Barnes 86]. This less flexible spatial partitioning has the benefit of sim
plicity, and allows a more rigorous error analysis. Again, an argument is given to support a time 

complexity of 0{N log N). 

3.2.3 Greengard's fast multipole algorithm 

By further examining this strategy, Greengard and Rokhlin [Greengard 87, Greengard 88] 

lowered the time complexity of the N-body problem to 0{N). Although their error analysis and 

theoretical development is mostly concerned with potential fields, the underlying methodology 
transfers readily to other application areas. 

Greengard has one major discovery set forth in his dissertation. He develops the theory of 

multipole expansions for potential fields. This discovery allows a preset error criterion to dictate 
how accurately to approximate the interaction between two clusters of particles. The algorithms 

of Appel and Barnes obtain higher accuracy by restricting which clumps may interact with one 

another. Greengard's algorithm, on the other hand, maintains a fixed rule for which clumps may 

interact, but uses the so-called multipole expansion to approximate the interactions to the desired 
precision. 

Instead of dealing directly with accelerations or forces, Greengard instead chooses to approxi

mate the potential, rather than the force field. Potential is a scalar field whose value at any point 

in space is the relative potential energy elicited by all other masses in the system. The gradient of 

the potential field is a vector field called the force (or acceleration) field. Its direction at any point 

in space points in the direction of steepest decrease in the potential field. Mathematically, this is 
expressed as follows: 

F { X )  =-V <b{x) , (28) 

where: F ( x )  is the vector force field at point *, and 

<I>(a;) is the potential at point x. 

For problems in two dimensions, the potential at point x due to a unit mass or charge at point XQ 

is given by, 

4)^^ (ar) = -log ( |x - *o| ). (29) 

Substituting (29) into (28), we have the expression for the gravitational force field in two dimen

sions, 



www.manaraa.com

32 

For problems in three dimensions, the potential for a unit mass is given by, 

= lî^-

Substituting (31) into (28), we have the expression for the gravitational force field in three dimen

sions, 

which gives us the familiar inverse square relationship between gravitational force, and distance 
between the masses of interest. For purposes of illustration, we shall use the two-dimensional 

potential function in the following analyses, which are due to Greengard and Rokhlin. Also, for 
ease of expression, we shall represent the two-dimensional vector x = xà^+yày as the complex 
number z = x + iy. This way, we may take logs of z directly without the inconvenience of using 

vector magnitude notation. 

3.2.3.1 Bounding the interaction error 

From the theory of logarithms, we have the identity 

log(z-2o) = log(2)+log(l-j) , (33) 

and the series expansion 

l o g ( l - u ; )  =  | w | < l .  ( 3 4 )  

We substitute (33) and (34) into (31) to obtain 

4 ) ^ ^ ( z )  =  ] o g ( z ) -  ̂ l ( ^ )  .  ( 3 5 )  
k = 1 

Now, if we suppose that there are particles of mass {m,-, l<iSn} located at points 

{Z(, 1Si <n} , with <r, then for any z>r, we may perform the following derivation for the 
global potential field. 

*(z) = = ]^m/log(z) - ]^1(5) ) 

" " m, 2, * 
=  ] o g ( z ) % m , _ 2 ; [ : ^ ( ^ )  
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=  l o g ( z ) % m , +  % ^ % .  
1 = 1 * = 1 i= 1 

Ok 
.* 

where: 

= Aflog(z) + ^ 
* = 1* 

n 

M = and 
1 = 1 

n 

: = 1 

V -mf, 

(36) 

(37) 

(38) 

Equation (36) is called the multipole expansion of the potential field due to n particles. M is sim
ply the total mass in the system, and the are the multipole expansion coefficients. Now, we may 

approximate the potential by truncating the infinite series to p terms where p S 1: 

(t)(z) = Mlogz + ^ (39) 
Af = 1 * 

In order to derive the error bound, we begin by rearranging (36) in the following way: 

(t) ( 2 )  -Mlogz- ^ 
k = 1 

V» "A 
L jk 

* = p + i ^  
(40) 

From (38) and (40), we may obtain the following inequalities bounding the error: 

V ^ 
A =p + 1' 

<M 
* =p + , & i z r  

<M 
A  = p +  1  

M 

1 -

p + i 
= ( (41) 

where c = 

Thus, for points sufficiently far away from the particles at z, , the p-term multipole expansion 

has a simple error bound dependent upon the geometric relationship between the set of particles 

and the point at which the potential is evaluated, and the number of terms in the multipole 

expansion. Note that there are now two parameters that affect the error bound: c and p. c is the 

ratio of the separation between the particle cluster and the observing point to the cluster size, p 

controls the amount of work spent evaluating the multipole expansion. 

Greengard fixes c at 2, and selects p to obtain the desired accuracy. Note by this method, it is 

relatively easy to prove that the time complexity of the fast multipole algorithm is 0(N). Appel 

uses a monopole approximation, which is equivalent to fixingp at 1. Thus, Appel's algorithm must 

use larger separation ratios a between clumps to maintain a constant error. A critical observation 

about these two approaches may now be made. In (41), we may observe that increasing the num-
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ber of multipole expansion coefficients by one will reduce the error in the approximation by a fac
tor of two. Tb achieve the same reduction in error by only evaluating clumps that are farther 

apart, one must double the distance between clumps. This has the effect of decreasing the number 

of interactions that may be approximated to within the error bound, and forcing more of the ele

mentary particle-to-particle interactions to be computed. 

It is clear that using more terms in a multipole approximation will increase the computational 

work required to evaluate the potential field by a constant factor. Increasing the minimum dis

tance between clumps in Appel's algorithm will force the refinement of a constant number of 

interactions, and thus also increase the computational work by a constant factor. Just which con
stant factor is smaller will be implementation-dependent. 

3.2.3.2 The algorithm 

Greengard proposes two versions of his algorithm: one that uses a uniform spatial subdivi
sion, and one that uses an adaptive spatial subdivision. A uniform spatial subdivision is appropri

ate for systems with a uniform spatial distribution of particles. An adaptive spatial subdivision is 
appropriate for systems with localized clumps of particles. For purposes of simplicity, we shall 

consider only the uniform spatial subdivision version here. 

Before giving the fast multipole algorithm, several terms must be defined. First, we define the 

computational box hierarchy. Consider a square box which contains all of the particles in our sim

ulation. This box will form the root of the box hierarchy (level 0). We now divide the root box into 

four equal sized boxes to form level 1 of the box hierarchy. By recursively applying this subdivi

sion, we form a hierarchy of boxes that become smaller as we proceed down the hierarchy. Subdi

vision continues until the smallest boxes (the ones at the leaf level) each contain fewer than a pre-
specified number of particles. 

In order to satisfy the error bound in (41) sufficient separation must exist between computa

tional boxes if the multipole expansion is to converge properly. With c = 2, a sufficient condition 

for satisfying the error bound is that interactions only be computed between computational boxes 

at the same level, and that the two interacting boxes not be neighbors. Figure 6 illustrates a four-

level hierarchy. A box at the leaf level is labeled as box j. All boxes in fs interaction list are 

shaded. Note that the eight boxes immediately touching boxy are not part of the interaction list 

because they are too close for the multipole expansion to be valid. Potential interactions between 

particles inj and particles in these eight boxes must be calculated directly. Interactions between j 

and boxes outside the interaction list are not considered because they can be handled at a higher 

(coarser) level in the hierarchy. 

Finally, there is a subtle difference between a multipole expansion and a/oca/ expansion. Note 

that the multipole expansion in (36) is only valid outside a certain radius, r, about the center of 

the expansion. If we replace Z in (36) with z-ZQ, where ZQ is the center of the multipole expan

sion, we may expand in a Taylor series to obtain ([) (z), the multipole expansion about the origin, 

rather than z^. Thus, we are able to translate the center of a multipole expansion. This transla

tion comes at a price, however. The original multipole expansion about ZQ is valid for all points 
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Level 0 

Level 1 

Level 2 

Level 3 

j's interaction list 

Figure 6; Interaction list of a computational box 

lying outside a circle of radius r, centered about ZQ. The shifted expansion is valid for all points 

lying outside a circle of radius |2o| + r, centered about the origin. Thus, in translating the center of 

a multipole expansion, we greatly expand the region in which it will not converge. For a detailed 

description of why this is so, the reader is referred to [Greengard 88 pp. 9-10]. In order to make 

the fast multipole algorithm work, a method is needed to move the center of a multipole expansion 

without incurring this convergence penalty. The solution is called a local expansion. If we expand 

(36) in a MacLaurin series, we obtain 

* ( z )  =  ^ b i z ' ,  ( 4 2 )  
1 = 0 

» J 

where; = aolog(-ZQ) + (-1)*, 
k = 1 ^ 0  

"0 ^0 A = 1 ^0 
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are the binomial coefficients. 
k J 

If the multipole expansion upon which (42) is based converges outside a circle of radius JÎ cen

tered at ZQ, then the local expansion in (42) converges inside a circle of radiuscentered at the 

origin iff \zq\ >2R. An error bound for the conversion of a multipole expansion into a local expan

sion exists, and is similar in nature to (41). For a detailed derivation of this error bound, the 
reader is referred to [Greengard 88], pages 12 and 13. 

The local expansion gives us a way of adding up the contributions from multiple well-sepa-

rated multipole expansions about a central point. This is possible because all of the local expan

sions will converge in an area of analyticity near the origin, whereas, no shifted multipole 

expansions would converge near the origin. For purposes of clarity, Greengard's fast multipole 

algorithm is presented in Algorithm 6 as a series of high-level steps rather than in algorithmic 

notation. 

3.2.3.3 Analysis of time complexity 

As a basis for analyzing the time complexity of the fast multipole algorithm, we will first ana

lyze how the potential interaction may be computed between two clumps of particles. Figure 7 

Figure 7: Interaction between two clumps of particles 

shows two clumps of particles centered at Xq and y^. In each case, all particles in a clump lie 

inside a circle of radius R of the center of the clump. In order to calculate the effect of all particles 

yj due to all particles we could simply calculate 

m 

4) (){/) = % «t»,. (:>;) (43) 
1 = 1 ' 

for each the n particles yj. This clearly requires Oimn) work. Instead, suppose we form a p-term 

multipole expansion of the gravitational potential due to m masses at requiring 0(m) work. We 

may then evaluate the multipole expansion at each of the n points yj, requiring 0(.n) work. Thus, 

by using the multipole expansion, and settling for a bounded error in a potential interaction, the 

work may be reduced from 0(mn) to 0(m)+0(n). But how may interactions are there? It is obvious 



www.manaraa.com

37 

1. For each box j at the leaf level of the hierarchy, do the following: Form the 
multipole expansion of the potential field due to all particles in box^ about 

the box center of boxy. 

2. Work up the hierarchy, from the level above the leaves towards the root, 

and do the following for each box, j: Form the multipole expansion about 

the center of box j by shifting the center of/s child's expansions. Add all 

these shifted multipole expansions together to form the composite multi-

pole expansion for box 

3. Work down the hierarchy, from the root towards the leaves, and do the fol
lowing for each box, 7: Form local expansions about the center of boxy due 

to the composite multipole expansions of all boxes in fs interaction list. 

Accumulate these local expansions into a composite local expansion for box 

J. If J is not a leaf box, then shift the composite local expansion to the center 
of each of fs children, and propagate it down to them. After this step is 

complete, the local expansions at the leaf level are available to evaluate the 
potential due to all particles other than those in boxy and its nearest neigh

bors. 

4. For each boxy in the leaf level, do the following: Evaluate the composite 

local expansion at each particle position to obtain the potential due to all 

distant particles. Store these potentials into each particle's aggregate 

potential. 

5. For each box y in the leaf level, do the following: Evaluate the potential 
directly due to all other particles in boxy, and/s nearest neighbors. Accu

mulate these potentials into each particle's aggregate potential. 

Algorithm 6: Greengard's fast multipole algorithm 

from Figure 6 that each box at each level in the hierarchy has a constant number of interactions 
with other boxes. Thus, there are OiN) interactions to be computed. Since multipole and local 

expansions can be formed, translated, and accumulated in constant time, the total amount of 

work required to execute Algorithm 6 is 0(N). 

3.3 Hierarchical Radiosity Methods 
The hierarchical method was first applied to radiosity by Hanrahan et. al. [Hanrahan 91]. In 

this algorithm, the coupling between clumps of patches (but not initial polygons) is approximated 

to within a constant error estimate. There is the added complication that the coupling between 

single patches is analytically unwieldy, and must therefore be approximated. Furthermore, no 
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reasonable hard bound yet exists for the error in the coupling approximations, so it, too, must be 
approximated. 

In stellar dynamics codes, physicists have the luxury of being able to accurately model parti
cles as point masses. In the radiosity milieu, patches cannot be modeled as point areas due to 

their extremely close relative proximity. In summary, the differences between the AT-body problem 

and the hierarchical radiosity problem are as follows: 

1. The solution to an iV-body problem is the final position and velocities of the particles, or how 

the particles move. Particle forces and positions are alternately updated until the desired 

span of time has been simulated. The solution to a radiosity problem is an approximation to 

the continuous brightness across the surfaces in the scene. Patches never move; instead, they 

are refined into smaller patches which will better approximate the brightness gradient 

across a surface. Particles in an TV-body problem are indivisible units. 

2. Patches cannot be modeled as point areas in the same way that particles can be modeled as 

point masses. In the realm of TV-body problems, the relative separation between particles is 
very large. It therefore suffices to represent a particle as a point mass. Given a point mass 

representation, it is trivial to compute the exact gravitational interaction between two parti

cles. In a radiosity environment, closed systems or rooms are always modeled. Thus, there 

will always be patches which are adjacent to one another. The ratio of their separation to 

their size will not be large, and thus, a coupling estimate based on point areas will be grossly 

in error. 

3.3.1 Patch couplings and link splitting 

Exact couplings can be determined for simple arrangements of patches. Usually, these "sim

ple" arrangements are in terms of axis-aligned rectangles or disks [Sparrow 85, Siegel 81]. Meth

ods exist for approximating the coupling between surface patches which do not fit one of these 

nice arrangements [Goral 84, Cohen 85, Hanrahan 90, Smits 91]. These methods, however, are 

plagued by a number of drawbacks. The hemi-cube approximation proposed by Cohen, et. al, 

[Cohen 85] requires a very large amount of work to form its coupling estimate relative to other 

methods. The other methods are much quicker, but are prone to gross error if the patches are 

close to one another, or if the support plane of one patch splits the other patch. Also, no tight 

bound on the error in any of these coupling approximations exists. 

At this point, it becomes clear that there are many different sources of error in the hierarchi

cal radiosity problem. There is coupling estimate error caused by the inexact nature of the equa

tions used to approximate the coupling between patches. There is solution error caused by the 
inexact (iterative) numerical solution of the linear system of light transport equations. There is 

spatial discretization error brought about by approximating the continuous radiosity solution 

with a set of constant-intensity patches (These topics will be covered in more detail in the section 

titled "Alternation of error types" on page 46). In the TV-body problem, there are only two sources 

of error: interaction error between clumps of particles, and temporal discretization error caused by 

the discrete time stepping nature of the algorithm. 
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The method of hierarchical radiosity has a general form similar to that shown in Algorithm 7. 
The major differences between the two previously existing hierarchical radiosity methods lie 

mainly in how they define the error in a link, and the error in the solution. In neither case are link 
and solution error in commensurate units 

Read in the scene description 
Create initial link or links 
Initialize brightness of each patch 
While the error in the solution is too large 

Refine some links, doing those with the largest error first 
Solve for new patch brightnesses 

End while 
Write the final patch geometries and brightnesses 

A point in Algorithm 7 needs to be further elucidated. Just what "refining a link" means has 
not been defined. We do so now. In Algorithm 5 on page 29, we see that if an interaction does not 

meet the error criterion, then the procedure TwoNode recurs, and examines two interactions with 

subclumps. This replacement of one interaction with two interactions at a finer level of resolution 

is what is meant by link refinement. But what if a link is already at the leaf level in the hierarchy? 
In the N-body problem, such an interaction cannot be further refined because a particle is indivis

ible. In the radiosity setting, we may subdivide the patch into two daughter patches. Patches may 

always be subdivided if necessary, and new nodes added to the bottom of the hierarchy. 

Algorithm 7: Hierarchical radiosity 

Hierarchical structure 

Physical 
structure 

Figure 8: Physical and hierarchical interpretation 
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Figure 8 is a depiction of the subdivision and coupling of two patches together with its hierar
chical representation. Note that patch 1 has been split down the middle to form two subpatches, 3 

and 4. Patch 2 has been similarly split into patches 5 and 6. Figure 9 shows the link refinement 

steps which led to the arrangement shown in Figure 8. The refinement process begins with a sin

gle link from the hierarchy root node to itself. Since this link is a self-link, it is refined into three 

l i n k s :  C ^ ,  C j j ,  a n d  S i n c e  b o t h  p a t c h e s  1  a n d  2  a r e  f l a t  a n d  c a n  h a v e  n o  s e l f - c o u p l i n g ,  C j i  

and C22 are 0 and we see only the Cjj coupling in step 2. The Cjg coupling is then refined into 

Cg2 and C42, and finally C32 into C^g and Cgg. 

Step 2 
Step 1 

Node 

Node 

Node Node 

Step 3 

Node 

Node 

Node Node 

Step 4 

Node 

Node Node 

Node Node Node Node 

Figure 9: Link refinement steps preceding Figure 8 
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For the following derivation, we shall use form factors rather than coupling factors. Recall 
that is the fraction of power (or power per unit area) leaving patch q and arriving at patch p. 

Thus, if Xg denotes power per unit area (this quantity is called irradiance) being emitted by patch 

Ç, then FpgXg is the amount of power per unit area emitted by q that impinges on p. From a phys

ical standpoint, we may calculate the total irradiance of any patch p by summing for all Fp^ 

at all nodes above, on, and below node p in the hierarchy. 

We will now derive rules for splitting a link on the left. Consider patch p where p has 

daughters I and r. The expression for the total irradiance arriving atp is 

''p = •P'M*, + «/ + «r + P' (44) 

where Cp^ is the link to be split, a, is the contribution from all links at or below patch I to the 

irradiance of patch I; is the contribution from all links at or below patch r to the irradiance of 
patch r; and P is the contribution from all links at or above patch p, except for link Cp^, to the 
irradiance of patch p. The expressions for the total irradiance arriving at I and r are: 

+ + (45) 

Now, suppose we replace link Cp^ with the two links and Let us now rewrite (44) and 

(45) in light of this link splitting. The expression for the irradiance at p now becomes 

+ a, + + p. (46) 

The expressions for the irradiances of patches I and r become 

bi = + + p 

6, = f„%, + a, + P. (47) 

Thus, splitting a link on the left affects only the expressions for the irradiance of patches p, I, and 

r. Such a splitting will presumably yield a more accurate irradiance for patches I and r. 

Now, suppose we wish to split link Cp^ on the right. Again, we will consider patch p, but this 

time patch q will have daughters I and r. The expression for the total irradiance arriving atp is: 

= f'pgZq + a + P, (48) 

where Cp^ is the link to be split, a is the contribution from all links below patch p to the irradi

ance of patch p; and P is the contribution from all links at or above patch p, except for link Cp^, to 

the irradiance of patch p. Now, suppose we replace link with the two links Cpi and The 

expression for the irradiance of patch p now becomes 

= FpiXi + + a + p. (49) 

Thus, splitting a link on the right affects only the expression for the irradiance of patch p. 
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An important addition to the above splitting will be discussed in the section titled "Unidirec
tional vs. bidirectional links" on page 56. In that section, splitting the link on the left implies 
a splitting of C^p on the right, and vice versa. 

3.8.2 Ham-ahan's method 

Hanrahan, et. al, choose to approximate the form factor from one patch to another using a 

point-to-disk coupling estimate. In this method, the form factor from a patch /? to a patch q is 
approximated by the following formula: 

Actually, (50) is derived from the equation for the form factor between a differential area and a 

disk, not two areas. Hanrahan argues that the differential area to area form factor will be a good 

estimate of the true form factor as the separation between the area increases. Furthermore, the 

magnitude of (50) is a good estimate of the error in the form factor itself. 

When determining the coupling between two patches, one must be cognizant of the possibility 
that another patch lies between them. Thus, a visibility test must be performed to see if the 

patches of interest are obscured with respect to one another. Hanrahan's method fires a fixed 

number of test rays between the two patches and notes how many are blocked by another patch. 

The estimated form factor between the patches is then attenuated by the fraction of rays which 
were obscured. If all rays are obscured, then the candidate link is thrown out completely because 

no light can be propagated between the two patches. This strategy has serious flaws which are 

discussed at length in the section titled "Airtight occlusion testing" on page 52. 

Hanrahan proposes that a better measure of the error in a link is the amount of energy that it 

propagates, rather than just the form factor between the two patches. The reasoning behind this 

assertion is that links between dark patches don't matter because there is little light there to 

transport in the first place. This alternative criterion for refining links is called "BF refinement" 
because link error is calculated by multiplying patch Brightness by link Form factor. From a 

physical point of view, BF refinement asserts that a correct radiosity solution minimizes the error 

in the total amount of energy being transported in the scene. 

The link refinement process is driven by a decreasing (BF)^ criterion. A value for (BF)^ is 

chosen, and links are refined to this precision, The system is then solved, iBF)^. lowered, and the 

process repeated. No specifics are given regarding how (BF) ̂  is chosen initially or changed dur

ing the course of the algorithm. 

(50) 

where is the radius of the disk at q, 

is the distance from the center ofp to the center of q, 

0] is the angle between Rp^ and the normal to patch p, and 

8g is the angle between Rp^ and the normal to patch q. 
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Next, there is the subject of solving for patch radiosities. The method in question essentially 
uses the Jacobi iteration, which was discussed in the section titled "Jacobi iteration" on page 18. 

The convergence test, however, is not specified in the published work. From this omission, we 

must assume that little attention was paid to the relationship between the error estimates for 

links, and the degree of accuracy to which it appropriate to solve for patch radiosities. This rela

tionship is discussed at length in the section titled "Alternation of error types" on page 46. 

Since form factor estimates are not approximated to within a preset error tolerance, Hanrah-

an's algorithm is not driven by an a priori error criterion like Appel's and Greengard's algorithms; 

rather, it produces a bound on the error as a result of subdivision. This is not necessarily bad, but 
its appropriateness depends upon the application to which it is applied. 

3^.3 Smits' method 

The hierarchical radiosity method proposed by Smits, Arvo, and Salesin [Smits 91] is an 

extension to that of Hanrahan, et. al. Its major contribution is the introduction of importance into 
the link refinement process. Until Smits' importance-driven radiosity algorithm, a radiosity solu

tion was view independent', that is, the solution for patch brightnesses and the link refinement 

process did not depend on from where the scene was viewed. Once the system was solved, it could 

be viewed from any location in space with equal fidelity. Smits argues that in a scene containing 

many objects which are not directly viewed, a solution may be reached much more quickly if a 

viewing point and viewing direction are specified. In other words, patch radiosities are calculated 

to a high accuracy only for the surfaces which are directly visible to the viewer, or contribute sig
nificantly to their illumination. 

In order to determine which patches in a scene are "important," a transport equation is solved 

which is dual to the light transport itself. Whereas the light sources in a scene emit light, the 

viewpoint emits importance. Thus, two simultaneous transport systems are solved: the usual 

radiosity transport of light from light emitting patches toward the viewer, and the transport of 

importance from the viewer toward the light sources. 

The definition of link error is modified so that only links between bright and important 

patches are refined rather than just links between bright patches. Smits further modified the def

inition of link error in two ways which are coincident with this research. The first way has to do 

with taking into account the reflectivity of the patches at either end of a link. Details are dis

cussed in the section titled "Flaw in area/form factor threshold reasoning" on page 55. The second 

modification has to do with the way coupling error is estimated between two patches. Recall that 

Hanrahan used the magnitude of the form factor between two patches in his estimate of the error 

in the coupling. Smits proposes taking several estimate samples across the surface of each patch. 

These samples are averaged together to form the actual coupling estimate, and their ran^e is used 

as an estimate of the error in the coupling estimate. More discussion is given in the section titled 

"Coupling estimates" on page 57. 

Exactly like Hanrahan's algorithm, Smits' link refinement process is driven by a decreasing 

criterion. A value for {BF) ̂  is chosen, and links are refined to this precision. The system 
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is then solved, (BF)^ lowered, and the process repeated. No specifics are given regarding how 
(BF) g is chosen initially or changed during the course of the algorithm. 

3.4 Problems Amenable to Hierarchical Methods 
At this point, we have enough data to make some preliminary observations about what kinds 

of physical problems are amenable to solution with hierarchical methods. First, we borrow a char
acterization of potential problems from [Greengard 88]: 

where ^ncor ® very localized potential which decays rapidly with dis
tance, 

'^external extemally imposed potential and is independent of the 
number or size of particles in the system, and 
is a far-field potential for which contributions from all parti
cles in the system are significant. 

The term is too localized to benefit from hierarchical methods, and ^f^temai indepen
dent of the number and size of particles in the system. It is the far-field potential term, 

which is of interest because of its dependence on all particles in the system. In a 3D potential sys
tem, the far-field interaction falls off as the square of the distance between interacting particles. 

Analogously, the light intensity emitted from a patch falls off as the square of the distance from 

the patch. This decreasing interaction with distance is precisely the property which allows us to 

cluster particles and patches together, and estimate interactions between them to a specified level 

of accuracy. 

In order for a hierarchical method to be useful, it must be faster than existing methods. In the 

case of a highly clustered TV-body problem, hierarchical methods have reduced the time complex

ity of the problem from 0(N^) to 0(.N) for a given level of accuracy. In the case of the radiosity 

problem, hierarchical methods have reduced the time complexity of the problem from 0{N^) to 

0(AO for a given level of accuracy. 

More generally, a problem must obey the principle of superposition (or at least have a bounded 

error for a superposition) for present hierarchical methods to be applicable. Furthermore, the sys

tem must be stable so that a small error made solving the system of equations implied by the 

interactions does not produce a disastrously wrong final answer. 
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CHAPTER IV 

HIERARCHICAL RADIOSITY ENHANCEMENTS 

4.1 Introduction 
The new hierarchical radiosity method has provided a great leap in performance for radiosity 

renderings. In its original form, however, several serious issues were left unresolved. We present 

several major improvements to the hierarchical radiosity algorithm. Among them are: a better 
accounting of the error in link estimates; a mathematically sound basis for trading off solver error 

against link error; improved occlusion testing which does not involve ray tracing; and a novel self-

consistency check called "rowsum correction" that removes many of the image artifacts associated 

with hierarchical radiosity. 

The method of hierarchical radiosity [Hanrahan 91, Smits 92] has provided a powerful new 

framework in which to solve the radiosity problem. Form factors are now approximated to only 

the accuracy demanded by the calculation. Clustering has reduced the complexity of radiosity 

from O(n^) to 0{n). BP refinement adaptively subdivides polygons only where the error in trans

ported energy becomes too large. Hemi-cubes are replaced by simple coupling estimates and a 

realization that inaccuracy in the coupling estimate is acceptable so long as it is reducible with 

patch refinement. 

Several drawbacks and deficiencies still exist, however. Error in link estimates and error in 

system solution are not handled in a consistent fashion. Artifacts caused by the method of esti
mating coupling factors exist, and have not been acknowledged or mitigated. Currently, no 

method for clustering initial polygons exists for purposes of creating fewer than initial links, 

where n is the number of initial polygons. Also, ray tracing is currently used to determine 

whether two patches are visible with respect to one another. This method is prone to catastrophic 
error, is very costly, and does not obey a consistent error criterion. If enough rays are cast to make 

this method consistent with an error criterion, it completely dominates the execution time. 

We address these problems, and put forth techniques and suggestions for dealing with them. 

Error consistency is supplied by defining solution error, link error, and discretization error in 

terms of power, and alternating between refining and solving to a matching accuracy tolerance. A 

type of artifact, dubbed the "tartan" artifact, is shown to exist in all hierarchical renderings. A 
self-consistency correction factor is applied to operations involving the hierarchical matrix-vector 

multiply, and is shown to deal effectively with the tartan artifact. 

A method is proposed for building a hierarchy above the initial polygons so a single unified 

data structure is seen by the link refinement algorithm, rather than a forest of hierarchies. A 

method for estimating the coupling between groups of polygons is also presented. This gives the 



www.manaraa.com

46 

algorithm the unique ability to start with a single link from the hierarchy root node to itself, and 
refine it into as many links as are needed. 

A method of classifying the state of occlusion between two polygons with respect to a single 

third polygon is presented. This new method classifies the visibility between the two test polygons 

as either totally visible, partially visible, or totally occluded, and does not have a catastrophic fail

ure mode like the ray tracing method. 

Some terms related to the hierarchical radiosity method are defined here. As the subdiscipline 

is very young, the terminology is not widely used. 

The hierarchical radiosity method takes as input, a set of initial polygons. Interactions or 

links are formed between the initial polygons, representing all possible light transport paths. A 
link consists of a coupling factor estimate, an estimate of the coupling factor error, references to 

the two patches between which the link is transporting light, and the visibility of the two patches. 

Visibility is an indication of how much of each patch is visible from the other patch. Once the ini
tial links are set up, the links are placed into a priority queue which is keyed to their link errors. 

We call this priority queue of links the link heap. Links are then refined by taking the link with 

the largest error from the link heap, and splitting one of the patches it couples. Usually, the larger 
patch will be split or subdivided. The link is discarded, and two (or more, depending on how many 

subpatches are created during subdivision) new links are created between the newly created sub-
patches and the original patch that was not split. New couplings, coupling errors, and visibilities 

are determined. These new links are placed back into the link heap. 

As subdivision proceeds, a hierarchy of subpatches is created below the initial polygons. As 

refinement proceeds, link error is smoothly reduced. Periodically, a solution pass is made to 

update patch radiosities. 

In the following sections, we will discuss some weaknesses in the existing hierarchical radios

ity method, and propose enhancements that strengthen the method. 

4.3.1 Alternation of error types 

The diffuse radiosity equation has several types of error that may be present in a computed 

solution. The integral form of the diffuse radiosity equation is: 

4.2 Background and Definitions 

4.3 Discussion 

(52) 

where b  ( x )  is the radiosity at point x ,  

e  ( x )  i s  t h e  e m i t t a n c e  a t  p o i n t  x ,  

p(z) is the reflectivity at point *, 

g (%, x') is the visibility between * and x', and 

f{x,x') is the differential form factor between x and x'. 
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Equation (52) is typically discretized into a form such as equation (53). The rough loci of four 
sources of error are pointed out below. A fifth source of error, machine representation error, exists 

but is not localized. 

1. Numerical error in the computed solution. This is caused by an inexact numerical solution to 
the system of linear equations. It is measured in units of power per unit area (typically 

watts/meter^). We measure it in terms of the residual. 

2. Error in modeling patch emittance and reflectance. These quantities are generally assumed 
to be exact for purposes of computer graphics. 

3. Discretization error. This is a measure of how well the patches we have selected approximate 

the underlying continuous solution to (52) in a piecewise constant manner. 

4. Patch coupling error. Error here arises from the approximation of the coupling factor 

between two patches. 

5. Machine precision. A computer can represent real numbers to only a finite degree of preci

sion. Fortunately, 32-bit floating-point representation is usually more than adequate for pur
poses of radiosity calculations. 

As we attempt to solve the radiosity equation, there is no reason to waste time minimizing 
only one or two of these sources of error. If our patch coupling estimates are only good to within 

10%, then solving to more than one decimal of accuracy is meaningless. 

Discretization error can be thought of as how much error we introduce by approximating a 

curve by a constant. Thus, in terms of the radiosity problem, discretization error is related to the 
change in brightness across a patch, which is, in turn, related to the change in coupling factor 

across a patch. This change in coupling factor across a patch is one of two things our estimate in 

coupling factor error seeks to quantify. 

It is not clear in the current literature to what criterion solving is done. There is no reason to 

solve the system to an accuracy greater than that in the coupling estimates. In order to trade off 

these sources of error against one another, they must be measured in consistent units, such as 

power. The error in the solution estimate is defined as: 

N 

(53)  

3 

IIArIL =  II (A- fAF)6-AeL (54)  

where r is the residual vector. 

Equation (54)  gives the residual in units of power. For the error in a link, we define the following: 
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Ep^= max (Pp (C;, - C;,) 6,, (C;, - CT,) 6p) (55) 

where is the error estimate in coupling ofp and g, 

Cp^ is the largest sampled coupling ofp and q, and 

is the smallest sampled coupling ofp and q. 

Equation (55) gives the estimated error in a link in units of power. 

A consistent set of error measures for our calculated solution and couplings is now available. 

One can now solve only to the accuracy of the refinement, and refine only to the accuracy of the 
solution. Algorithm 8 illustrates this alternation scheme. 

Asolution = oo 

Arefine = <» 

While numlinks < desired_links 
If (Asolution < Arefine) 

{ Solve to below Asolution.) 
{ Return new Arefine. ) 
Arefine = Refine(Asolution) 

Else 
{ Solve to below Arefine. } 
{ Return new Asolution ) 
Asolution = Solve(Arefine) 

End if 
End while 

Algorithm 8: Alternation of error types 

Experimentation has been done with Conjugate Gradient, Gauss-Seidel, and Jacobi-based 

solvers. For purposes of this chapter, Jacobi iteration is used as a simple batch-oriented method. 
This algorithm wastes time neither oversolving nor overrefining. The error in both the solution 

and the refinement is lowered until the desired terminating condition is reached. 

4.3.2 Rowsum correction 

One may regard the set of refined links as representing a matrix of coupling factors. The rows 

of this matrix must, by the definition of coupling factors, add up to the area of the patch which the 

row represents. Since the coupling factors have only been estimated, the row sum will deviate 

from the actual patch area by some amount. This error tends to alternate spatially, giving rise to 
what is dubbed the "tartan artifact." Figure 10 shows a "Cornell box" rendered with 10,000 links. 

Notice the dark bands near the box corners which form a plaid pattern. 

The reason for this artifact follows directly from the way links are formed near any internal 

corner, and the nature of the coupling estimate used. Near a corner, links from the patches on one 
wall to patches on the other wall tend to make two sets of angles with respect to the normal of 

each patch. Figure 11 shows an illustration of the coupling estimate versus link angle. Also shown 

is the exact coupling for the same configuration. Marked along the horizontal axis are the two 
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Cpq 

. Exact 
coupling 

Estimated 
coupling 

Figure 11: Coupling estimate and actual coupling 

angles at which links are formed. In general, the error is different for each angle cluster. The links 

formed to the rows of patches near the corner in Figure 10 alternate between these two angles. 

Thus, alternately, too much and too little light will be transported between them, and dark bands 

will appear. 

We know that the rows of the induced coupling factor matrix must add up to the patch areas 

in a closed scene. Therefore, in operations involving multiplication by the coupling matrix, we 
may use the following correction: Consider the matrix-vector product x = tv, where C is the cou

pling matrix perturbed by errors in coupling estimates. If we calculate the rowsums of C in a 

manner similar to matrix-vector multiply, we can construct a correction vector, r = (C/)"' where 

i is a vector of I's. This correction vector may be used to scale x. Thus we use x = {Cv) diag (r) 

a s  a  b e t t e r  a p p r o x i m a t i o n  t o  C v .  

Figure 12 shows the same scene in Figure 10, but with rowsum correction applied during the 

solution. Note the more uniform color of the walls, and the near-disappearance of the bands char

acteristic of the tartan artifact. 

4^.3 Clustering of polygons 

With complicated geometries containing many initial polygons, the number of initial links cre

ated by existing methods in the hierarchy may be prohibitively high. Other hierarchical methods 
treat initial polygons as the root of their own tree. Thus, one grows a forest of hierarchies as the 

refinement proceeds. 

Here, these independent hierarchies are merged into a single unified hierarchy. The initial 

forest is merged recursively, as a preprocess, by joining pairs of sub-hierarchies into composite 

nodes. In order to be successful, the composition must capture enough of the salient features of its 

constituents to produce a reasonable coupling factor estimate. An added convenience is that a sin

gle link from the root hierarchy node to itself provides a good "ambient" light approximation. 

A simple area-to-area coupling factor estimate is found to work well for calculating composite 

couplings. The visibility for any link involving a composite node is set to partial. Once this link is 

refined to a point where both ends are polygons, a proper occlusion test can be performed. 
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An added benefit of clustering is that hierarchical bounding boxes may be built above the ini

tial polygons. This helps with occlusion testing since bounding box checks are much faster than 
the "airtight" occlusion test to be discussed next. 

As mentioned in the introduction, the algorithm may be started with a single link from the 

root hierarchy node to itself. Normally, a link from a node to itself would be meaningless, because 

a polygon cannot "see itself." The root hierarchy node, however, is not a polygon, but a composite 

of several polygons or other composites. The question arises of how to refine a link from a compos

ite node to itself. Normally, given a link between two unique nodes p and q (they may be compos

ites, patches, or a mixture), the refinement process will split either p or q, and establish links 

between the daughters of the split patch and the other original patch. When a self-link (c <-> c) 

from a composite node c is split, it is replaced with three links. Assume c can be split into daugh
ters cl and c2. The following links are created: cJ <-> cl, cl o c2, c2 <-> c2. Since either cl or c2 

may be composites, self-links must be created for them. If cl or c2 are polygons, the self-link will 
be discarded. With this simple scheme, global interchange of light among all patches is accounted 

for. 

4.3.4 Airtight occlusion testing 

If couplings are to be approximated within a given error tolerance, and the solution need only 

be computed to within that same error tolerance, why then should an occlusion test fire a constant 

number of rays between two patches to approximate visibility? This violates the principle of keep

ing all sources of error in the calculation at roughly the same level. If this kind of scheme were 
asked to keep up with the error tolerance in coupling estimates and the solution, a prohibitive 

number of rays would have to be fired between the patches. A catastrophic error is possible if all 
sample rays hit or miss a partial occluder. In other words, the maximum error for ray casting will 

always be 100%. No amount of further refinement will change this. A better way of determining 

visibility is needed. 

With this in mind, an occlusion test has been created which returns one of three answers; vis

ible, occluded, or partial. Visible or occluded are returned with certainty. It will return partial 

obscurément if it cannot determine anything else. Visible links never need any further visibility 

testing performed on any links derived from them. Occluded links are simply thrown out since 

they propagate no light. Partially obscured links must be tested again at lower levels of subdivi

sion to determine if splitting a patch has caused the visibility to change. 

The "airtight" occlusion test takes as input three convex polygonal patches: o, p, and q. Note 

that each patch has a front and a back determined by the orientation of its normal vector. A patch 

may only emit or receive light on its front side. 

After it is determined that p and q face one another and that they do not split the other with 
their support planes, the test forms a convex hull between p and q. This hull, together with p and 

q, forms a closed, convex polyhedron. The occluding polygon, o, is tested against this polyhedron 

to see if it lies outside, inside, or straddles this polyhedron. In the following description, the poly
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gons p and q will be referred to as the endcaps, and the rest of the hull will be referred to as the 
waist. 

Note that the waist hull can only be constructed for p and q when they face one another, and 
the support plane of one polygon does not split the other. 

-Waist polygon 

•Waist edge Support plane 
of occluder 

Occluding polygon 

Figure 13: Construction of waist hull 

The waist hull (Figure 13) is constructed from the intersection of a number of half-spaces. 

Each face of the waist hull is planar, and is represented as an oriented plane called a waist plane. 

In the above diagram, each waist plane touches two vertices of one polygon (p or q), and one ver
tex of the other, thus forming a triangle. 

An important computational issue to be addressed is what happens when a point is tested for 

being on one side or another of a plane, and other similar comparisons against zero. Numerical 

error can cause a point lying on a plane to appear to lie on either side, or both sides! Instead of 

simply using the sign of a dot product to test, four ideas are employed: a point may be, with 

respect to an oriented plane: strictly in front of; on or in front of; strictly behind; and on or behind. 
T h i s  i s  e q u i v a l e n t  t o  t e s t i n g  t h e  r e s u l t  o f  t h e  d o t  p r o d u c t  r  b e i n g  r > E , r > - e , r < - e , o r r < e .  

In the following two algorithms, the < symbol is used to mean "strictly behind," the S sign to 

mean "on or behind," and similarly for the > and > signs. The algorithm is expressed as Algo

rithm 9. 
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1. Visibility Test: 
If p < g or g < p 

return occluded 
2. Support Plane Splitting Test: 

If support plane of p splits g 
or support plane of g splits p 

return partial 
3. Endcap Test: 

If o < p or o < g 
return visible 

If p>o and gào 
return visible 

If p<o and g< o 
return visible 

4. Waist Plane Tests: 
Construct waist planes 

If o<l or more waist planes 
return visible 

If the intersections of all 
waist edges with support plane 
of o lie on or inside of o 

return occluded 
5. Failing all else 

return partial 

Algorithm 9: Airtight occlusion test 

The details of constructing the waist planes are contained in Algorithm 10. Algorithm 10 

details how to construct the waist planes which rest against an edge ofp and a vertex of q. A sim

ilar procedure must be done to construct the waist planes that rest against the edges of q and the 

vertices of p. Care must also be taken to ensure that the waist edges are kept in the proper order 

such that their intersections with the occluder support plane naturally sweep out the waist poly
gon. 

The current implementation of Algorithm 9 for quadrilaterals takes, in the worst case, about 

2200 floating-point operations per call. On average it takes about 320 floating-point operations 

per call because of early return exits. Note that the occlusion routine will typically be called with 

the same p and q many times, but with different occluding polygons. Since most of the calcula

tions are specific to p and q, a drastic reduction in work can be achieved if one reuses the waist 
hull from a previous call with the same p and q. 

The airtight occlusion test has one drawback for a small number of links. Since it can only test 

against one occluding polygon at a time, it will sometimes classify links as partial when, in fact, 

they are completely occluded. Consider some p and q with two large abutting polygons ol and q2 

between them such that p and q are completely obscured by the combination of ol and o2. The air

tight occlusion test will say that p and q are partially visible with respect to either ol or o2. Since 

it has no precise geometric information about the union of ol and o2, it cannot detect that p and q 
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For all vertices i in p: 

e = Pvertex[i+1] - Pvertex[i] 
For all vertices j in g: 

f = Qvertex[j] - Pvertex[i] 
n  =  f x e  
If gS:plane (/", e) 

Accept planet/,e) 
Break j loop 

End if 
End for 

End for 

Algorithm 10: Waist plane construction 

are actually completely occluded. In effect, p sees q "through the crack" between ol and o2. The 

upside to this problem is that further refinement will eventually attenuate the amount of light 
which "leaks through the crack" to an arbitrarily small amount—an advantage that the ray trac
ing approach to occlusion testing does not share. 

4.3.5 Binary vs. quadtree subdivision 

Hanrahan et al. promote the idea of subdividing a quadrilateral into four quadrants when it 

needs to be split. This has a major drawback: if an eccentric quadrilateral is split using this phi

losophy, the four pieces will also be eccentric. Eccentric polygons provide very poor coupling esti

mates. Therefore, with quadtree subdivision, the coupling estimates will improve veiy slowly. 

Binary subdivision, on the other hand, does not share this problem. The subdivision algorithm 

now has a choice as to the way it splits the quadrilateral. It can choose to split the longest side 
and the side opposite that side. If a quadrilateral of eccentricity less than J2 is split in this way, 

the resulting daughter patches will be more eccentric than the mother. However, when the daugh

ters are split again, their eccentricities will decrease to less than or equal to their grandmother's. 

Applied recursively, this scheme will tend to reduce the eccentricity of the subdivided patches. 
Since daughter patches are less eccentric than their mothers, they will have better coupling esti

mates to other patches in the scene. 

4.3.6 Flaw in area/form factor threshold reasoning 

The original algorithm proposed by Hanrahan, Aupperle, and Salzman used two error criteria 

to terminate subdivision: A^ and Pg. was the smallest form factor a link was allowed to have. If 

a link ever fell below this threshold, it was never again considered for refinement. Ag was the 

smallest area a patch was allowed to have. If a patch became smaller than Ag, then it could not be 

subdivided further. 

Apparently, the Ag and F^ criteria still exist in both formulations of the hierarchical radiosity 

method [Hanrahan 91, Smits 92]. Both disclaim that with BF refinement and/or importance-

driven refinement, the A^ test is seldom necessary. Form factor error is not in itself important. 
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Only as an element of energy transport does it have any significance. implies error is the goal of 
refinement; it is not. The real error criterion is reflected power: Only the reflected power 

criterion should be used; it should not be augmented with an arbitrary A,, or F^ test. 

In fact, it is simply wrong to use an arbitrary threshold of any kind in the refinement process. 

If the error in a link is so large that a patch needs to be split, then it should be split. If it is not, 
then one has one has effectively established a minimum error below which the algorithm can no 

longer accurately refine. The A<. and F^ thresholds are not simply superfluous; it is incorrect to use 
them and expect the algorithm to proceed accurately. 

4^.7 Link subdivision 

The algorithms of both Han rah an and Smits refine links to some chosen error criterion, which 
we will call {BF)^, at each subdivision step. All links whose errors are greater than than (BF)^ 

are refined until the error in all subsequent links falls below (BF)^. In neither case does the 

author indicate how (BF) ̂  is chosen intially, or how it is lowered. 

We propose keeping the links in a priority queue (link heap) organized by their estimated link 

error. This way, the link with the largest error is immediately available. Pushing links onto and 

popping links off of the heap are both 0{N) operations. When a system solution step is performed, 

all link error estimates are changed, and thus the heap must be reheapified. This is an 0(AO oper

ation, and does not change the overall time complexity of the algorithm. Keeping the links in a 
heap structure has the advantage of always attacking the greatest source of error among the 

links. Thus, the overall link error is lowered as quickly as possible, and the greatest economy is 

achieved in terms of the number of links used to obtain a certain error. 

4.3.8 Unidirectional vs. bidirectional links 

Even with the space for coupling factors reduced from 0(.N^) in the number of patches in a 

scene to OiN), the hierarchical radiosity method is still memory-limited on most computers. Sev

eral factors have contributed to this: 

• Coupling estimates between patches can be generated quickly. 
• Since the coupling matrix has only 0(AO blocks, solution time is also 0(AO. 
• With alternation of error types, excess time is not wasted solving to too high an accu

racy. 
• Occlusion testing between patches is relatively inexpensive when compared to ray cast

ing. 

In its original form, the hierarchical radiosity method used unidirectional links. That is, a 

coupling between patches p and q had a link at p pointing to patch q, and vice versa. Thus, the 

storage used for couplings was twice what it should be. This exacerbates the memory-limited 

nature of the hierarchical algorithm. Far worse in a computational sense is that the storage for 
these links is scattered throughout physical memory in a computer. Since each node in the hierar

chy must have room for a variable number of links to other nodes, several serious performance-

limiting issues exist: 
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• Static storage. One may allocate a constant amount of space per node for storing links. 
If the list is too small, a node may overflow its link table. Even if chosen correctly, hav
ing a constant-size list of links at each node will waste a tremendous amount of mem
ory. 

• Dynamic storage. One may dynamically manage link tables at each node. The overhead 
of calling a memory allocator every time a link table needs to be expanded will become 
crippling. Furthermore, memory will become extremely fragmented after the algorithm 
has run for a while. And again, the possibility of egregious memory waste exists. 

• Priority queueing of links. In order for link refinement to proceed, the link with the 
greatest error in propagated energy must be available for refinement quickly. This 
means either keeping a copy of all links in the hierarchy or searching the hierarchy. 

The only practical reason for storing the links owned by a particular patch in the patch data 
structure itself is to facilitate shooting of light. A more efficient strategy is to remove the links 

from the hierarchy, and keep them in a dedicated priority queue, or "heap." This way, one only 
stores one copy of the link, makes the best use of memory possible, and keeps links in a form 

where the link with the largest error is available quickly. 

4.3.9 Coupling estimates 

Hanrahan et al. use a single point-to-disk coupling estimate. We have observed that the cou

pling factor estimate takes a small fraction of the total time in a hierarchical radiosity calculation. 

Thus, investing more work to more accurately estimate the coupling and its error is warranted. 

We use the four corners, plus the average of the four corners, as five sample points on each 
patch. The coupling estimate between 8 pairs of these sample points is then computed. The cou

pling estimate between the "centers" is calculated, and counted twice. The minimum and maxi

mum of these 10 coupling factor estimates are tracked to estimate the error in the final coupling 

factor estimate. Singular couplings produced by patches that touch are replaced with zero, since 
the singularity disappears in integration. 

At this stage, coupling factor samples are allowed to be negative. Negative couplings will hap

pen when one of the sample radii passes behind either patch, such as when the support plane of 

one patch splits the other patch. Since the minimum of all coupling estimates will be negative in 
these cases, the difference between the maximum and minimum will be larger than if negative 

couplings are simply discarded, or treated as zero. This has the beneficial effect that links 

between patches where a plane splitting occurs are split sooner than links between other patches. 

To form the overall coupling estimate, all non-negative coupling estimates are averaged. Also, 
partial couplings are scaled by 0.5 in the absence of information regarding Aow partial the visibil

ity is. 

4.3.10 Estimation of error in coupling estimates 

The error estimate in a coupling factor estimate serves a dual purpose. First, it seeks to quan

tify the error which is intrinsic in the coupling estimate between two patches. Second, it seeks to 

quantify the variation in coupling factor across a patch. This variation in coupling factor is a mea
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sure of discretization error. Thus, this error estimate is used to control both the error in links and 
the error in discretization of patches. 

4.4 Results 
The "harpsichord practice room" (Figure 14, Figure 15) was solved on a DEC station 5000/240 

with 32 MBytes of physical memory in 50 minutes. 500,000 links were created, and the resulting 

hierarchy had 23,423 leaf-level patches. 63.5% of all links are completely unoccluded, the remain

der are partially occluded. 19,291 links were thrown out due to total obscurément. Only 36.5% of 

the total time was spent refining links. 62.9% of the time was spent solving for patch radiosities. 
The remaining 0.6% was spent reading the scene description, and writing the patch positions and 

radiosities. The algorithm required approximately 19 MBytes of physical memory to run. Below in 

Table 4 is a report from our program. Note that we have purposely left Figure 14 and Figure 15 

unsmoothed so that any solution artifacts that remain can be clearly identified. 

Table 4; Program performance report 

500,000 links: 

Task Seconds Operations MFLOPS % of Time 

Reader 0.16 19022 0.122 0.0% 

Refine 1092.25 5709913505 5.228 36.5% 

Solver 1881,17 1379848860 0.734 62.9% 

Storer 19.21 4931430 0.257 0.6% 

TOTALS 2992.79 7094712817 2.371 100.0% 

4.5 Summary 
In any physical problem, there are multiple sources of error. By understanding these sources 

and exploiting the fact that no part of the problem need be solved to an accuracy greater than that 

of any other part, we may arrive at an acceptable solution with minimal work. 

Previous work has treated solution error in a cavalier manner. Shooting was used to solve for 

patch radiosities without regard for the error present in patch-to-patch coupling estimates. We 

have set forth a method of objectively alternating between link refinement and radiosity solution 

that keeps both types of error in balance. A measure of discretization error is incorporated into 

our link error estimate as well. 

A novel self-consistency check called "rowsum correction" is based upon well-known proper

ties of form factors, and is effective in dealing with image artifacts created by systematic inaccu

racies in coupling factor estimates. 
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Figure 14: Harpsichord practice room without rowsum correction 
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Figure 15; Harpsichord practice room with rowsum correction 
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CHAPTER V 

MAKING THE HIERARCHICAL METHOD PARALLEL 

5.1 Elements of a Good Parallel Program 
Before launching into the details of how to implement the hierarchical radiosity algorithm on 

a parallel machine, let us pause to review what the attributes of a successful parallel program 

are. Some of these attributes are common-sense matters, and some have had their importance 

emphasized only through extensive experience with multiple parallel architectures. 

First, let us consider efficiency. In this context, we define efficiency as a subjective measure of 
"how well" a particular algorithm utilizes the hardware it is running on relative to another algo

rithm running on the same hardware. A parallel implementation should not suffer a large penalty 
just because it is being run in parallel. Many factors contribute toward the final efficiency of an 

algorithm-hardware combination such as algorithm choice, hardware platform choice, data 
decomposition and mapping, control structure decomposition and mapping, effective load balanc

ing, and effective use of language features. A most effective illustration of just how much effort 

has been expended on this topic is in the area of linear equation solving. A vast number of matrix 

decomposition strategies have been studied to see how well-suited they are to a particular parallel 

architecture. Matrix decomposition strategies tried include: row-wise wrap mapping, column-wise 

wrap mapping, row-wise serpentine mapping, column-wise serpentine mapping, horizontal strip 

wrap mapping vertical strip wrap mapping, 2D block decomposition, 2D scattered decomposition, 

etc. Hardware topologies studied include hypercube, torus, mesh, ring, and various bus-based sys

tems. The point is that a problem may be approached from many different angles; one must be 

extremely careful when laying out the software architecture for an application from the very 

beginning. 

Next, we focus on algorithm choice. On a uniprocessor machine, algorithm choice is not nearly 

as critical as on a parallel machine. Notwithstanding data dependencies, the manner in which 

data is accessed and the order in which computations are performed matter little, aside from pipe

line and cache effects. On a parallel machine, however, things are different. First, there must be 

sufficient work to perform at all times to keep all processors busy. If there is insufficient parallel

ism in the algorithm, efficiency will suffer due to unutilized processors. There is also the issue of 
data locality. All present large-scale parallel computers have fast memoiy local to each processor, 

and a slower method of retrieving data from other processors. In some cases, this data retrieval is 
performed via explicit message-passing; in others, it is handled by a shared virtual address space. 

In all cases, remote memory access is significantly slower than local memoiy access. If an algo

rithm constantly requires data from other processors to operate, its efficiency will suffer. Every 

effort must be made by the programmer to insure that as much data as possible is local so as not 
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to incur communication penalties. Sometimes, this means not choosing the best serial algorithm 
available, but rather backing up to an algorithm which has a sufficient amount of parallelism to 

exploit. 

With the recent availability of large scale parallel computers, scalability issues must be taken 

into account. Put simply, scalability is a measure of how well an algorithm is able to effectively 

utilize an increasing number of processors. An algorithm should not be prejudiced toward a par

ticular size of parallel computer. Where possible and reasonable, it is desirable to make an algo
rithm independent of exact machine topology, or at least modularize the communication 

primitives so that they can be easily modified if the algorithm is moved to a new architecture. 
This leads us to our next topic: portability. 

From the beginning, an algorithm should be designed as architecturally-independent as possi

ble. The extremely short product lifespan of current parallel computers makes forward-thinking 
software design critical if an application is to survive more than a few years without major rede

sign. 

5.2 Statement of Algorithm 
Until now, only a general outline of the hierarchical radiosity algorithm has been given. In 

order to conduct a meaningful discussion on how to make it parallel, a more detailed description 

of the hierarchical algorithm is in order. Provided below is a detailed pseudocode description of 

the exact algorithm to be discussed in this chapter. 

We will now review the serial implementation details of several key steps in Algorithm 11. 

First, let us define some terms, and visualize the major data structures of this algorithm. The 
scene is defined by the user in terms of a set of polygons which form a closed environment. 

Another user-specified quantity is the number of links they wish the algorithm to use to propa
gate light about the scene. It is the algorithm's responsibility to use these links in the most effec

tive manner possible. Step 3 states that a hierarchy should be built atop the given polygons. 

Figure 16 shows how the hierarchy of composite nodes is constructed. Note that the composite 

nodes are numbered, starting from 1, in the order that they are created. The root composite is 
numbered zero. The input polygons are placed into a queue to start with. Pairs of nodes are 

removed from the head of the queue, and a composite node constructed as their parent. The new 

composite node is then pushed onto the tail of the queue, and the process repeated until there are 

no nodes left. The last composite formed is called the root node, here numbered zero. 

A word is in order about what kind of data is and is not stored in the nodes of the hierarchy. 

Every node in the hierarchy contains the following data; the area of what the node represents, be 

that a polygon or a composite; a center which will be used as the 3D coordinates of a patch; loca

tions for storing hierarchical vector elements (to be discussed below); and left, right, and parent 

pointers to implement the tree structure of the hierarchy. Each polygon node contains the follow

ing additional data: its four vertices (which must be coplanar), a normal vector to the polygon, and 

a bounding box to be used to speed up occlusion tests involving the node. When polygons are sub-
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1. Read the list of polygons comprising the scene and their properties 
2. Read in the number of links to form, reglinks 
3. Build hierarchy above these polygons forming composites recursively 
4. Initialize all composite nodes 
5. Initialize the link heap 
6. Initialize brightness solution vector to patch emissivities 
7. Form a single link from the root node to itself 
8. Push this link onto the link heap 
9. Set numlink = 0 
10. Set solv_error = 0 
11. Set link_error = error in the root self-link 
12. While numlink < reglinks 
13. While link_error > solv_error 
14. Remove link from top of heap 
15. Subdivide the end of the link with the greatest error 
16. Form two new links from the unsplit end of the original link 

and the two new patches 
17. Evaluate the new links' visibility 
18. Approximate couplings for the new links 
19. Compute an error estimate for each link 
20. Push the links onto the heap if they are not totally occluded 
21. Increment numlink accordingly 
22. Set link_error - error in link at the top of the link heap 
23. End while 
24. Set solve_flag = 0 
25. While solv_error > link__error 
26. Conduct one step of Jacobi or Conjugate Gradient iteration 
27. Compute a new soIv_error 
28. Set solve_flag = 1 
29. End while 
30. If solve_flag = 1 
31. Update all link error estimates due to new solution vector 
32. Reheapify the link heap 
33. End if 
34. End while 
35. Write out the leaf-level patches and their brightnesses 

Algorithm 11: Improved hierarchical radiosity 

divided during the solution process, daughters are added below them which are identical in struc

ture and content to the original polygon nodes. 

In previous radiosity Tenderers, the solution to the radiosity equation is a vector of patch 

intensities (see equation (8) on page 15). In the hierarchical radiosity algorithm, the solution can 

still be regarded as a vector, but the definition of a vector must be modified slightly. For purposes 

of hierarchical radiosity, we shall call the lefl-to-right ordering of the patch brightnesses in the 

leaf level of the hierarchy a hierarchical vector. All quantities in (8) which were conventional vec

tors become hierarchical vectors in the context of hierarchical radiosity. The form factor matrix, 

F^j becomes a hierarchical matrix, whose structure and elements are induced by the links created 

in the refinement process. Shown in Figure 17 is a hypothetical patch hierarchy with a set of six 

links connecting the nodes of the hierarchy. Note that nodes in the hierarchy are not identified as 
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Figure 16: Construction of composite hierarchy 

Node 

Node Node 

Node Node Node Node 

Node\ /Node 

Figure 17: Couplings in a patch hierarchy 

polygons or composites. It does not matter whether the end of a link points to a polygon or a com
posite; the nature of the link remains the same. Each link is labeled with its coupling factor value. 

There are five leaf nodes in the sample hierarchy. Therefore, we should expect to solve a system of 

five equations in five unknowns. The linear system coefficient matrix that is induced by the links 

in Figure 17 is shown in Figure 18. This is matrix C in equation (15) on page 17. Note that 

Cpg = Cqp due to the definition of coupling factors (equation (14) on page 16). Now that we have 

the concepts of hierarchical vectors and hierarchical matrices, it makes sense to talk about opera

tions on them. Element-wise operations on hierarchical vectors are trivial. One simply applies the 

operation (addition, subtraction, scaling, negation, etc.) to the hierarchical vector element or ele

ments in each leaf node in the hierarchy Hierarchical vector dot product, and norms are handled 
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Figure 18; Structure of coupling matrix 

similarly. Hierarchical matrix-vector multiply is somewhat more complex, and will be discussed 

later in this chapter. 

Step 4 calls for the initialization of all composite nodes in the hierarchy. As discussed in the 

section titled "Clustering of polygons" on page 50, a composite node serves to summarize salient 

geometrical features of all patches in its subtree. The area of a composite is the sum of the areas 

of its daughters. Each hierarchical vector element is the area-weighted average of its daughter's 
corresponding elements. 

Step 5 calls for the initialization of the link heap. Later on in the algorithm, it will be neces

sary to have fast access to the link with the largest error. A heap provides a log-cost method for 

popping the link with the largest error, and adding new links. 
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Steps 7 and 8 form a single link from the root hierarchy node to itself, and push it onto the 
link heap. The intuitive significance of this step is important. The root hierarchy node represents 

all patches in the scene. A link between two nodes in the hierarchy says that those two nodes are 
exchanging energy. A link from a node to itself represents an exchange of energy among its con
stituents. Thus, a link from the root (composite) node to itself represents a scalar summary of all 

light interaction in the scene. Note that a link from a node to itself only makes sense for a compos

ite node. A patch cannot emit light that will directly fall on itself because it is flat. Another impor
tant point is that the system starts out fully connected', every patch sees every other patch 

through this single link. Whenever a link subdivision is performed, this full connectivity is main

tained. 

In the next several steps, the variables link_error and solv_error are initialized. The 

variable link_error is the largest error estimate of any link in the system. This error is lowered 

by subdividing links. The variable solv_error is the residual from the approximate iterative 
solution to the radiosity equation. It is lowered by running the iterative solver for additional iter

ations. They key idea with these two variables is that there is no reason to solve the system to an 
accuracy greater than that of the link subdivision, and no need to subdivide links any more accu

rately than the patch radiosity solutions. Thus, the algorithm alternately subdivides links, and 
solves in a leap-frog fashion until the desired number of links have been constructed. 

Step 15 performs two distinct actions; it decides which end of the link to split, and then actu

ally subdivides that node. The decision regarding which end to split is relatively simple: If the 

nodes at both ends of the link are composites, the larger composite is split. If only one of the nodes 

that the link connects is a composite, then the composite is split. Otherwise, both ends of the link 
are polygons, and the larger one is split. Splitting a composite node is a null operation since com

posite nodes already have daughters. Splitting a polygon is a null operation if it has already been 

split by a previous link refinement. Note that it is possible to split the same hierarchy node many 

times during the course of link refinement. If the polygon has not been split, it is split into two 

smaller polygons along a line connecting the midpoints of its longest side and the side opposite. 

Steps 16 through 19 form and initialize two new links to take the place of the one link popped 

off the top of the heap in step 14. A link contains the following quantities: a coupling estimate 

between two nodes in the hierarchy, references to each of these nodes, a visibility flag, and an error 

estimate. Steps 20 through 22 push these new links onto the link heap, update the link count, and 

retrieve the new maximum coupling error estimate. 

Steps 24 through 28 conduct just enough iterative solution steps to bring the solution residual 

under the maximum estimated link error. An explanation is in order about the choice of hierarchi

cal vector norms for use in these steps. One-, two-, and infinity-norms all work for hierarchical 

vectors, but they have different physical interpretations in the context of the radiosity problem. If 
we use the one-norm, we imply that the error in the solution is proportional to the sum of the 

errors in all patch radiosities. The two-norm implies that errors in patch radiosities are indepen

dent random variables. Both of these norms tend to smear out the effect of a single large error. 
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The eye is not so forgiving! In a scene where a single patch's radiosity is significantly in error, the 
human eye will pick it out right away, even though the one- or two-norm will show a small overall 
error. The infinity-norm, or m ax-norm, gives us the maximum error in any patch radiosity, thus 

more closely mimicking what the eye does. Similarly, the link_error measure is the result of a 

max-norm type operation. It is only because these two error quantities are arrived at via similar 

means that it makes sense to directly trade them off against one another. 

Steps 30 through 33 are performed only if the system solution has been changed by the pre

ceding steps. Their purpose is to update the link error for all links. Note that the link error esti

mate changes when patch radiosities change. This was explained in the section titled "Flaw in 

area/form factor threshold reasoning" on page 55. When the error for all links in the heap 

changes, the ordering imposed by the heap structure is no longer valid. Therefore after each solu

tion refinement phase, the link heap must be "reheapified." A critical observation here is that 

rebuilding a heap from an unordered array is 0(iV), not 0{N log N) as is popularly believed (see 
[Gormen 90], page 145). Therefore, the complexity of the reheapify operation is asymptotically 

similar to that of the link refinement and system solution steps. 

The While loop from step 12 to step 34 continues to run, alternately refining links and solving 

until the requested number of links have been formed. Then, the final leaf-level patch geometry is 

written to an answer file, and the algorithm terminates. 

5.3 Observations 
After reviewing Algorithm 11, we are in a position to make some observations which will be 

useful in making it parallel. The first two observations concern the link heap, one of the two major 
data structures in the algorithm. Algorithm 11 refines one link from the link heap at a time. With 

a large number of links in the link heap, many of the top links in the heap will be subdivided 

before the next solution step. Why not take several links off the heap at once and subdivide them 
all as a batch? This would save L - 1 reheapify steps, where L is the number of links in a batch. 

The possibility exists, however, that some links in the batch would subdivide into links which 

themselves would otherwise have been immediately split. These links, which would normally 

have been further refined in an imminent refinement step will have to wait for the next batch to be 

split. Thus, some links which would have been split had we refined them one at a time will not be 

refined, and some links which would not have been split will be. Experimental evidence, to be pre

sented later, shows that this effect is not a serious problem provided the batch size is kept reason

ably small. 

The serial Algorithm 11 maintains a single monolithic link heap so that the link with the larg
est error can be removed at each step, Once we have decided to split links in batches, there is no 

reason for the heap to remain a monolithic structure. Indeed, it may be broken into a number of 

smaller heaps, and distributed across the processors in a parallel machine. Link subdivision may 

then proceed locally on each processor from its local heap. The exact nature of this decomposition 

will be discussed below in Section 5.4. 
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Principle 1 (Link heap); The link heap may be broken into several smaller link heaps, and these 
"subheaps" distributed across the processor array. Links from each subheap may be refined 

separately to increase parallelism. 

The other major data structure in the hierarchical radiosity algorithm is the hierarchy of 

patches itself. All hierarchical vector operations involve calculations at the leaf level. Hierarchical 
matrix-vector multiply, as we will show later, requires calculations involving every link in the link 

heap, and every node in the hierarchy. Furthermore, these calculations must be carried out in a 
partial ordering that is most conveniently satisfied by preorder and postorder tree traversais. For 

a tree traversal to make sense, a connected path must exist from root to leaf. Thus, any decompo

sition strategy we develop for the patch hierarchy must be conformai with tree traversais. 

Principle 2 (Hierarchy decomposition): Any patch hierarchy decomposition strategy must leave a 

traversable tree structure intact in every processor. Furthermore, the decomposition strategy 

must not incur any unnecessary interprocessor communication to conduct a top-down or bot

tom-up traversal. 

5.4 Identifying Sources of Parallelism 
The first step in making any algorithm parallel is to identify potential sources of parallelism 

to be exploited. The second step is deciding upon decomposition strategies for the data structures 

and control structures which have been targeted in the first step. There are two general classes of 

parallelism: data parallelism and operational parallelism. Data parallelism is exploited by 
decomposing and distributing data structures across processors. Operational parallelism is 

exploited by decomposing and distributing operations across processors. 

5.4.1 Data parallelism 

As mentioned earlier, there are two major data structures in the hierarchical radiosity algo

rithm: the link heap, and the patch hierarchy. Both of these data structures are candidates for dis

tribution across the processing elements (henceforth referred to as PEs) of a parallel computer. 

We must decide which of these data structures, if not both, should be distributed. We base our 

decision on the ratio of links to patches, as per the arguments in the section titled "Analysis of 

time complexity" on page 28, the section titled "Analysis of time complexity" on page 36, and 

[Hanrahan 91]. All of these arguments state that the ratio of the number of links to the number of 

patches in a hierarchical rendering is 0(1). Thus, neither data structure will ever dominate the 

other in terms of the total amount of memory consumed. Therefore, both the link heap, and the 

patch hierarchy must be distributed. A single link and a single hierarchy node are respectively 

atomic units of each data structure, and will not be decomposed further. 

5.4.2 Operational parallelism 

Analysis of a serial version of the hierarchical algorithm has shown that there are four main 

tasks or task classes which must be made parallel. They are: link subdivide, link heap reheapify, 

operate on hierarchical vectors, and hierarchical matrix-vector multiply. All of these operations 
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are 0 ( N )  with respect to the number of links and are therefore the asymptotically-limiting compo

nents of the algorithm. 

5.5 Data Decomposition Strategy 
5.5.1 Node hierarchy 

A link will require data from two different nodes in the patch hierarchy when used in the 

matrix-vector multiply operation. In order to minimize interprocessor communication, we could 
require that a PE owning a certain link also own the hierarchy nodes at both ends of the link. 

However, we know that the patch hierarchy is fully connected via links at all times, therefore a 

PE will own hierarchy nodes which are also owned by other PEs. This is impractical due to the 

ambiguity introduced in determining which PE or PEs update the duplicated hierarchy nodes. 

Also, extra work would be required to keep all duplicated versions of a hierarchy node up to date. 

Thus, requiring a PE to own the hierarchy nodes at both ends of all links its owns is impractical. 
A compromise is requiring a PE to own all the hierarchy nodes on only one end of its links. 

Principle 3 (Relationship between owned links and hierarchy nodes): Regardless of how the link 

heap is decomposed, we require a PE to own all the hierarchy nodes on the (arbitrarily-
defined) "left" end of all owned links. 

To derive more desirable properties of a patch hierarchy subdivision scheme, we consider the 
act of subdividing a link. Suppose a given PE owns some portion of the link heap and some portion 

of the patch hierarchy, according to some unspecified decomposition strategy. We also assume, in 
keeping with Principle 3 and without loss of generality, that a PE owns the hierarchy nodes corre

sponding to the "left" ends of all owned links. When a link is pulled off the local link heap for sub

division, several things could happen depending on the specifics of the hierarchy decomposition. 

Refer to Table 5 and Figure 19 for illustrations of the four cases of parallel link subdivision. 

Table 5: Situations in parallel link subdivision 

Node ownership 

Owns daughters of left 
node 

Does not own daughters of 
left node 
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Subdivide left 
end of link 

Case 1 
• Local link subdivision 
• Links remain local 

Case 2 
• Subdivide patch and send 

to owning PE 
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Subdivide right 
end of link 

Case 3 
• Tell owner of right end to 

subdivide and send to 
owning PE 

• Links remain local 

Case 4 
• Tell owner of right end to 

subdivide and send to 
owning PE 

• Links remain local 
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Local 
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Figure 19: Cases of parallel link subdivision 

Case 1 requires no internode communication at all; all operations are local to a processor. 

Case 2 incurs potentially four messages to two other PEs: two to send new patch geometiy data, 

and two to migrate the new links to their owners. Cases 3 and 4 each potentially require three 

messages to be sent: one from the owner of the link to the owner of the patch to be split, and two 

from that PE to the owners of its daughters. One has no control over whether the left or right end 
of a link is split. One does have control over whether the owner of a particular hierarchy node also 

owns the children of that node as well. This divides Table 5 into two groups: Cases 1 & 3, and 

Cases 2 & 4. Assuming that it is equally likely that the left and right end of a link is split, the 

average number of messages for Cases 1 & 3 is 1.5 messages while the average number of mes

sages for Cases 2 & 4 is 4 messages. The choice seems clear. 

Principle 4 (Hierarchy locality): The PE which owns a given hierarchy node should also own one 

or both daughters of that node. This is equivalent (in the case of both) to saying that the patch 

hierarchy should be distributed by subtrees. For the case of a PE owning both daughters, we 

shall refer to this subtree as an owned subtree. 

Regardless of what specific data decomposition is chosen for the hierarchy, it must provide a 

good load balance both in terms of data volume and computation volume. If it does not, the algo
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rithm will poorly utilize the processors of the parallel machine. Principle 3 effectively ties 
together the decompositions of the link heap and the patch hierarchy, so if one is load-balanced, 
the other will be. Principle 4 places preferences on how hierarchy nodes should be clustered on a 

PE, so the patch hierarchy decomposition will drive the link heap decomposition. 

Suppose we choose a level (counting from the root, starting at 0) in the patch hierarchy, and 

call it dlevel, for distribution level. We will distribute the subtrees rooted at level dlevel across the 

processors in our parallel computer. This type of distribution satisfies Principle 4. But what of the 

hierarchy nodes between the root and dlevel? 

5.5.1.1 Hierarchy decomposition method 1 

A "first-blush" attempt at resolving this question might be to duplicate the patch hierarchy 
above dlevel to all PEs in the system. This duplication will also satisfy Principle 2. All processors 

would own and update all hierarchical vector elements and links associated with all duplicated 

hierarchy nodes. Such a scheme has the advantage of simplicity, and a low overhead for communi

cation. Its disadvantages, however, are crushing. First, such duplication of hierarchy nodes and 

links imposes an inherent scalability problem. We know that 

All PEs Own 

m;###*##} 
28112911Ï 30 ÏI if 31 J| 

PS 

Figure 20: Hierarchy decomposition method 1 

dlevel >lnproc (56) 

where Znproc = floggCnproc)], and 

nproc is the number of PEs in the system. 

If the inequality in (56) were not satisfied, then there would not be enough subtrees to distribute 

to all PEs, The total amount of memory consumed by the duplicated hierarchy nodes is: 
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X roc X (2""""'+: - 1) ^M^„^^,y.nprocx (2'""'''"=+'- 1) 

=  X  nproc x (2 x nproc - 1) 

=  0 { n p r o c ^ )  (57) 

where is the amount of memory consumed by one hierarchy node. 

Under this decomposition scheme, the total amount of memory consumed by the algorithm 

will be on the order of nproc^, which clearly makes the algorithm unscalable. This alone is 

enough to disqualify such a decomposition from consideration. 

Note that the hierarchy nodes in Figure 20 have been renumbered. This new node numbering 

scheme has the following properties: the left daughter of a node has an ID number twice that of its 

parent, the right daughter has an ID number twice that of its parent plus one, and the nodes at 

level L in the hierarchy are numbered from 2^ to inclusive. Also, if the ID number is 

viewed as a binary number, it has a specific form: a 1 in bit L, followed by L unique position-

determining bits. That is, the ID number for a hierarchy node completely encodes its absolute 

position in the hierarchy. One simply works from left to right in the L bits to the right of the lead
ing 1 bit, and treats a 0 bit as "left" and a 1 bit as "right." By following the path specified in this 

interpretation down from the root node, one arrives at the hierarchy node. For example, let us 
consider node 25 in Figure 20. The decimal number 25 is 11001 in binary. The four bits to the 

right of the leading 1 bit say to follow a path of right-left-left-right down the hierarchy. If we fol

low this path from the root, we arrive at node 25. Although not particularly important now, this 

property will be of critical importance later. 

This hierarchy decomposition method has an additional drawback. Consider what happens at 

the beginning of Algorithm 11. A single link is pushed onto the link heap and refined. Under the 
current hierarchy (and therefore link heap) decomposition strategy, all PEs in the system would 

refine exactly the same set of links until one of them refined a link-end below dlevel in the hierar
chy. Thus, there is no parallelism whatsoever until links are split below dlevel. In a system with 

only a few processors, this might not be a problem since dlevel will be small. On a larger system, 
however, the algorithm might never run long enough to split a single link below the distribution 
threshold! This observation shows further unscalable behavior in the hierarchy decomposition 

method under consideration. 

5.5.1.2 Hierarchy decomposition method 2 

In an effort to reduce the amount of hierarchy node and link duplication, we may designate a 

PE to own a hierarchy node above dlevel if and only if some portion of the subtree rooted at the 

node is owned by that PE. An illustration of this modified hierarchy decomposition method is 

shown in Figure 21. This new decomposition method has a number of advantages over the previ

ous method. Redundant storage for hierarchy nodes is decreased significantly (this will be quanti

fied shortly). Parallelism above dlevel is increased because not as many links are duplicated on 

multiple processors. Parallelism increases gradually as one proceeds down the hierarchy; this is 
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Figure 21: Hierarchy decomposition method 2 

in stark contrast to method 1 where there is no parallelism at all until a link is subdivided below 

dlevel. 

Before we analyze the memory consumption of method 2, we first notice that there are 2^ 

hierarchy nodes at level L. We may also notice that the number of PEs on which a hierarchy node 

is stored is 2'^'""'"^. Now, the total amount of memory consumed by the hierarchy above dlevel is 

M, hnode 

dlevel -dlevel "Inproc 

^ nproc X 2^+ ^ 
L = 0 L Si die vel - Inproc + 1 

^dlevel — L ^ 

M, hnode 

dleuel 

nprocx(2'"""'-'''P""+'-l)+ ^ 2 
L = dlevel-Inproc-i-l 

dleuel 

= [nproc X + (/«proc -1) 2"'""'] 

SM hnode 

gfnproc -j 
2 X  nproc x  -  nproc + Inproc x  nproc - nprocj 

= A/^node X Inproc X  nproc 

=  0  { n p r o c  x h g  ( n p r o c ) )  (58) 

The total amount of memory consumed by the duplicated nodes is much less than in method 

1, especially for a large number of processors. However, there is still the duplication of hierarchy 

j 
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nodes, and the corresponding links associated with these nodes. There are other drawbacks, 

which will become clear in subsequent sections when load-balance issues are studied. 

5.5.1.3 Hierarchy decomposition method 3 

The primary failing of methods 1 and 2 is their inability to deal with parallelism in the patch 

hierarchy above dlevel. Both of these are strongly affected by the duplication of hierarchy nodes. 

Solving the duplication problem would seem to herald a major step forward. If we start at the 
level above dlevel, and work our way up, assigning ownership of each node to the PE owning the 

left daughter, we have the decomposition shown in Figure 22. 

EE 0 

FBO PE4 PEO 

PÈ6 PEO PË2 PË4 

PEO PEl PE2 PES PE4 PES PE6 PE7 PEO PBl PB2 PB$ PB4 PEG PB6 PE? 

Figure 22: Hierarchy decomposition method 3 

Figure 22 shows a hierarchy decomposed in such a way that there is no duplication of hierar

chy nodes across PEs. There is just one problem with this decomposition; it violates Principle 2. 

We can solve this problem too by asserting that a PE owns all nodes in the hierarchy above dlevel 

which have descendants owned by that PE. Such a duplication is identical to that shown in Figure 

21 with one major difference: every hierarchy node has a unique owner. A particular hierarchy 

node may exist on multiple PEs, but it is only owned by one. The instances of the node on non-

owner PEs are merely placeholders in the hierarchy structure; they contain no data, and they 

have no operations performed upon them. Note that since duplication (in ownership) of hierarchy 

nodes has been eliminated, so has duplication of links. 

Eliminating duplicate node ownership exposes the major flaw in this decomposition. Notice in 

Figure 22 that PE 0 owns 9 hierarchy nodes on or above dlevel. Also note that PE 7 owns only 2. 

This load imbalance only gets worse as dlevel is increased for a constant Inproc because all nodes 
in the first dlevel-lnproc levels are owned by PE 0. Since ownership of hierarchy nodes dictates 

ownership of links (by Principle 3), there will be a significant imbalance in the distribution of 

links, and hence in the amount of work for each PE. Even though all links will eventually be 
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refined below dlevel, performance will suffer early on. This is precisely the failing of methods 1 
and 2 which we had hoped to fix. 

5.5.1.4 Hierarchy decomposition method 4 

Instead of numbering the leaf nodes as shown in Figure 22, we can renumber them to cause a 
more even distribution of nodes further up the hierarchy. In the arrangement shown in Figure 23, 

we can see that PE 0 now owns only 6 hierarchy nodes, while PE 7 still owns 2. The burden on PE 

0 has been significantly reduced, even for this small number of processors. With a larger number 

of processors, the advantage becomes greater. This numbering is not arbitrary, but rather cycles 

through the bits of the owning PE number and flips the bit for the right daughter of a node, and 

does not flip it for the left daughter of a node. Note that if a PE owns node p, it also owns the left 

daughter of p. Total memory consumption for decomposition method 4 is still 

O {nproc X log (nproc) ) due to the necessity of placeholder nodes. 

•PEO 

PEO PE4 

PE2 PE4 PE 

PEO PEl PE2 PE3 PE4 PB 7 

PEO PE4 PEl PEG PE2 PE 6 PE 3 PE 7 PE4 PEO PES PEl PEG PE2 PET PE3 

Figure 23: Hierarchy decomposition method 4 

We may best derive the ownership of a hierarchy node using operations on binary numbers. 

The owning PE number is constructed in the following way using bits from its ID number. Recall 

that the ID number is a 1 bit followed by dlevel position-determining bits, which we will call G, 

followed by some number of irrelevant bits, X. The G bits encode a path from the root to a node at 

dlevel in the hierarchy. The X bits encode a path below dlevel, and are therefore not needed. For 

some nodes, all of the G bits may not be present; nodes above dlevel have fewer than dlevel avail

able G bits. Take all available G bits and pad with 0 bits on the right until there is a multiple of 

Inproc bits. Finally, take all groups of Inproc bits and exclusive-OR them together to obtain the 

owning processor number. 

Example: Consider a system where dlevel=l, lnproc=3 and ID=101100 (binary). First, we 

excise the leading 1 bit, and take up to 7 {dlevel) bits to the right of it. There are only 5 bits to be 
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had: 01100. We pad these bits with O's on the right until we have a multiple of 3 (Inproc) bits: 
011000. This 6 bit number is broken into two groups of 3 (.Inproc) bits and XOR-ed together to 

form the owning PE number: Oil © 000 Oil. Thus, PE 3 owns the hierarchy node. 

5.5.2 Link heap 

Principle 1 and Principle 3 effectively define exactly how the link heap must be decomposed. 

Let us examine this decomposition further and evaluate its suitability in terms of ease of imple
mentation, efficiency, and load balance. 

The links contained in the link heap are referenced by two processes: link refinement, and 

hierarchical matrix-vector multiply. The link refinement process, as stated in the section titled 

"Node hierarchy" on page 69, acts only on links which are local to a PE, and therefore imposes no 

constraints upon the link heap decomposition scheme. The same section establishes that it is 

impossible for a PE to uniquely own the hierarchy nodes at both ends of all links it owns. Some 
amount of communication with other PEs is necessary. On the positive side, the ownership of hier

archy nodes, and therefore the hierarchy decomposition, does not change as the algorithm pro

ceeds. Link ownership and the link heap decomposition also do not change as a consequence. 

There is some correlation between the load balance associated with the patch hierarchy and 
the load balance associated with the link heap. Ideally, we want them both to be well load bal

anced. If each patch in the hierarchy with a constant number of other patches, then load balanc

ing the hierarchy would automatically load balance the link heap. This is not realistically the case 

since geometrical effects and bright light sources cause a great number of links to concentrate on 

a few patches in some circumstances. This will be illustrated in greater detail in the section titled 
"Results and Analysis" on page 91. 

5.6 Critical Operations 
The previous section defines specific architectural mappings for the key data and control 

structures. With this in place it is appropriate to expound on the exact structure of several critical 

operations that the algorithm performs. 

Until now, no mention has been made of any specific parallel architecture. It is now necessary 

to do so because the machine architecture will have a large influence on the structure of the ker
nel operations to be discussed below. Differing machine grain sizes or memory models would war

rant alternate design choices for kernel algorithm structure. 

The machine architecture chosen for the first port of the parallel hierarchical radiosity algo

rithm is the nCUBE 2. It uses a proprietary CISC microprocessor in a multiple-instruction multi

ple-data (MIMD) hypercube interconnect which is scalable from 4 to 8192 processing elements 

(PEs). Each PE has a 64-bit internal architecture including registers, on-chip floating point hard

ware, and on-chip communications channels. Memory may range from 1 MB to 32 MB per PE. 

Each PE is capable of a theoretical maximum floating-point performance of about 3 single-preci-

sion MPLOPS (measured in terms of multiply-add operations where multiply and add each count 
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as one FLOP). The peak communication bandwidth between PEs is 2 MB per second in each direc
tion and on each communication channel. 

5.6.1 Random all-to-all communication 

The parallel link refinement, parallel hierarchical matrix-vector multiply, and reheapify oper

ations will all require sending and receiving randomly distributed short messages on all PEs. 

These messages could be sent individually, and the hardware left to deal with routing them where 

they need to go. Such a policy is disastrous for two reasons. First, short messages are notoriously 

inefficient on the nCUBE and similar machines due to message startup latency. Long messages 
are greatly preferable to short ones so that latency can be amortized over a longer actual trans

mission time. The second reason is contention. If thousands of short messages suddenly flooded 
the communication channels of the hypercube, there would be many messages completing for the 

same physical communication channels. Such contention is almost always disastrous, especially 

when the communication pattern is random. 

A better method is to alternately exchange packets between pairs of hypercube neighbors for 
each hypercube dimension. This way, there is no contention whatsoever for communication chan

nels, and messages of the longest possible length are used. 

Algorithm 12 takes as input two buffers, and the length of these buffers. The first buffer, 

called dests, contains a destination PE number for the corresponding element in the keys buffer. 
The algorithm assumes that it is called on all PEs at once, and that there are a power of 2 PEs, 

but does not assume that the length of each buffer is the same on all PEs. As before, iproc is the 
current PE number, and nproc is the number of PEs in the system. 

Since all communication in Algorithm 12 is in the form of send-receive pairs, PEs come into 

synchrony during its execution. Furthermore, if one PE is the source or destination of more mes

sages than its neighbor during a given phase, the other PE must wait for it to complete its trans

mission before it can continue. Thus load balance in terms of message volume is crucial to the 

performance of Algorithm 12. In terms of the hierarchical radiosity algorithm, we must balance 

the size of individual link heaps and the distribution of PEs to which the link owner connects. The 

first condition will be satisfied by a well-distributed patch hierarchy. The second condition is diffi

cult to control, although alternatives exist and will be discussed later in this chapter. 

5.6.2 Link refinement 

Cases 1 and 3 in Table 5 introduce the basic structure of the link parallel link refinement pro

cess. As a starting point, let us consider the exact structure of the serial link refinement algo

rithm. Algorithm 13 is straightforward since all data necessary for link refinement are 

immediately available. When the link heap is decomposed across a set of PEs, however, there are 

cases where all data needed to split a link lies on more than one PE. 

Step 1 provides the first situation where all PEs do not have all the data they need. The vari

able numlinks in the serial algorithm is simply the number of links in the one link heap. In a 

parallel implementation, there is a link heap on every PE and each one potentially is a different 



www.manaraa.com

78 

{ Initialize bit mask for each hypercube dimension ) 
mask = floor (iiproc / 2) 
{ Loop for each hypercube dimension } 

While masktl 
{ Separate dests and keys into two groups: one that ) 
{ stays on this PE, and one that should be sent off.) 
j = k = 0 

For each element i in dests 
If (dests[i] AND mask) = (iproc AND mask) 

destsIj] = dests[i] 
keys[j] = Aeys[i] 
j = j + 1 

Else 
tmpdests[k] = dests[i] 
t/npAeys[k] = keys[i] 
/c = ^ + 1 

End if 
End for 
( Compute a hypercube neighbor. ) 
neighbor = iproc XOR mask 
Send tmpdests to PE neighbor 
Send tmpkeys to PE neighbor 
Receive new dests from neighbor into end of dests vector 
Receive new keys from neighbor into end of keys vector 
Set length of dests and keys to j+number received from neighbor 
m a s k  =  f l o o r { m a s k  /  2 )  

End while 

Algorithm 12: All-to-all communications 

size. Global communication is therefore necessary to add all link heap sizes. Also, the variable 

link_error is multifarious in a parallel implementation. It contains the estimated coupling 

error in the link at the top of the link heap. Its value will potentially be different on each PE in a 

parallel implementation. Since much global communication will be necessary inside the while 
loop, it is necessary to have all PEs execute the body of the while loop whether or not they take 

part in splitting any links (see Section 5.6.1). Therefore, the global maximum of link_error 

must be computed, and used in the test in Step 1. 

Steps 7-11 may always be performed without communication on the PE owning the link 

because all composites and initial polygons reside on every PE. Note that this only consumes 0(1) 

memory on each PE because the number of initial polygons is 0(1). 

Steps 14-17 split into four cases in a parallel implementation. In the following, we shall repre

sent the left and right ends of a link with p and q, respectively. Recall that a PE owns a link if and 
only if it owns the hierarchy node p. The four cases are described below and in Table 6 

Case 1: A PE owns both daughters ofp as well as nodeg. This happy circumstance occurs only 

when node p lies on or below dlevel, and the PE happens to own node q as well. A subdivision 
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1. while (numlinks < reqlinks) and (link_error < solv_error) 
2. Pop a link from the link heap 
3. Set p = left end of link 
4. Set q •= right end of link 
5. I If the link is a composite self-link, split 3 ways. ) 
6. If (link is a self-link) 
7 . Subdivide patch p 
8. Form and initialize left<->left link 
9. Form and initialize leftwright link 
10. Form and initialize rightwright link 
11. Push all non-zero links onto heap 
12. ( Decide whether to subdivide p or q. ) 
13. Else if 

((p is composite) and (q is not composite)) or 
{(area of p > area of q) and (p is composite)) or 
( (area of p > area of q) and (q is not composite)) 

14. Subdivide patch p 
15. Form and initialize left(p)Wq link 
16. Form and initialize right (p)<->q link 
17 . Push non-zero links onto heap 
18. Else 
19. Subdivide patch q 
20. Form and initialize pwleft (q) link 
21. Form and initialize pwright (q) link 
22. Push non-zero links onto heap 
23. End if 
24. Set link_error to error in the link at the top of heap 
25. Set numlinks to the link heap size 
26. End while 

Algorithm 13: Serial link refinement 

action requires no communication. Node p is simply subdivided, two new links formed, and then 
pushed onto the local link heap. 

Case 2: A PE owns both daughters of p but does not own q. In order to split the link, the PE 

must acquire geometry data about node q from its owner. This involves a global communication 

step, as many PEs may have links with similar requirements. Then the PE may split node/?, form 

two new links using the newly-acquired geometry data about node q, and push them onto the local 

link heap. 

Case 3: A PE owns only one daughter of node p and owns node q. This case may only happen 
when node p lies strictly above dlevel. In this case, the link between the owned daughter of p and 

node q may be formed as in Case 1. The case of the unowned daughter is more complicated. Let us 
denote the unowned daughter of node p as node r. This is the first case where splitting a link pro

duces a link which is not owned by the PE owning node p. In this case, the new link from r to g 
will be owned by the PE which owns node r. Since the owner of node r has no information about 

the original link from p to q, it must be sent a message informing it that it is the new owner of a 

link from r to q\ thus, the link from r to g is migrated from the owner of node p to the owner of 
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liable 6: Situations in splitting left link end in parallel 

Ownership of daughters of left end 

Owns both daughters of p 
Does not own both 

daughters of p 

O
w

ne
rs

hi
p 

o
f 

right 
en

d
 

Owns q 
Case 1 

• Local link subdivision 
• Links remain local 

Case 3 
• One link remains local 
• One link must migrate to 

owner of unowned daugh
ter of p 

O
w

ne
rs

hi
p 

o
f 

right 
en

d
 

Does not own q 

Case 2 
• Get geometry informa

tion from owner of q 
• Links remain local 

Case 4 
• Get geometry informa

tion from owner of q 
• One link remains local 
• One link must migrate to 

owner of unowned daugh
ter of p 

node r. Since the geometry of node q is available immediately for the link from r to g, we may send 

it along with the migration message so the owner of r will not have to request geometry data on q 

later. 

Case 4: A PE owns only one daughter of node p and does not own node q. As with Case 3, this 

case may only happen when node p lies strictly above dlevel. Even more communication is 
required here than in Case 3. Since node q is not available to the owner of node p, a separate com

munication step is necessary to obtain geometry information for node q. The link from the owned 

daughter of p may then be formed and pushed onto p's local link heap. The r to g link migration 

may then be conducted exactly as in Case 3 to complete the link subdivision. 

Steps 19-22 split into two cases. Since the left end of both refined links will still be p, they will 

both reside on the PE which owns node p. 

Case 1: The owner of node p also owns node q. In this case, no communication is necessary. 
The PE simply subdivides node q, forms new links, and pushes them onto its local link heap. 

Case 2: The owner of node p does not own node q. Here, the owner of p must send off a split

ting request to the owner of q and receive the geometrical information about the new daughter 

patches. The new links may then be created and pushed onto the local link heap. One may ask 

what happens when the daughters of node q are not owned by the owner of q. In this case, the 

owner of q may still obtain valid geometrical information about both daughters, even though it 

does not own them. Only geometrical information is needed to form new links; ownership-depen

dent information is only needed to update the link error. Link error estimates may be updated as 

a body once a whole batch of links has been split. Updating the link error estimates is the topic of 

the section titled "Reheapifying" on page 83. 
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Wth the preceding issues discussed, we may now present the complete parallel link refine
ment algorithm. This algorithm takes place in nine phases. Most phases involve a global commu

nication step to route a list of packets between PEs using the algorithm described in the section 

titled "Random all-to-all communication" on page 77. The variable batchsize is used in step 7 to 

control how many links a PE splits at once. This quantity was discussed in the section titled 
"Observations" on page 67. 

1. Set numlinks to the global sum of all link heap sizes 
2. Set link_error to global maximum link error 
3. While {numlinks < reqlinks) and {link_error < solv_error) 
4. ( Phase 1: Separate a batch of links ) 
5. { into LOCAL, GEOM, and REMOTE lists.) 
6. Initialize LOCAL, GEOM, and REMOTE lists to empty 
7. For i = 1 to batchsize 
8. Pop a link from the local link heap 
9. If link is a composite self-link 
10. Put the link on the LOCAL list 
11. Else if both ends of link are owned by this PE 
12. Put the link on the LOCAL list 
13. Else if the left end of the link should be split 
14. Put the link on the GEOM list 
15. Else 
16. Put the link on the REMOTE list 
17 . End if 
18. End for 
19. { Phase 2: Work on the REMOTE list by sending splitting ) 
20. ( requests to the PEs owning the "right" ends. ) 
21. For each link in REMOTE list 
22. Synthesize a splitting request packet to owner of link 
23. End for 
24. Route all splitting packets to their owning PEs 
25. ( Phase 3: Service splitting requests and send ) 
26. { geometry information back to sending PE. } 
27. For each splitting request packet just received 
28. Subdivide the requested node 
29. Synthesize a splitting reply with the new geometry data 
30. End for 
31. Route all splitting reply packets back to requesting PEs 
32. { Phase 4: Split the REMOTE links using } 
33. { the data received in phase 3. ) 
34. For each splitting reply packet just received 
35. Form a new link from p to left(qr) 
36. Push onto local link heap if coupling is nonzero 
37. Form a new link from p to right(g) 
38. Push onto local link heap if coupling is nonzero 
39. End for 
40. I Phase 5: Work on the GEOM list by sending geometry ) 
41. { requests to the PEs owning the right ends. ) 
42 . For each link in the GEOM list 
43. Synthesize a geometry request packet to owner of right end 
44. End for 
45. Route all geometry request packets to their owning PEs 
46. { Phase 6: Service requests for geometry data ) 
47. ( and send back to the requesting PE. ) 
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48. For each geometry request packet just received 
49. Pack up the geometry of the requested node 
50. Synthesize a geometry reply packet 
51. End for 
52. Route all geometry reply packets back to the requesting PE 
53. ( Phase 7: Split the GEOM links using } 
54. { data received in phase 6. ) 
55. For each geometry reply packet just received 
56. Subdivide the left end, p, of the associated link 
57. Form a link from left(p) to g 
58. If left(p) is owned by this PE 
59. Push link onto local link heap 
60. Else 
61. Synthesize a link migration packet 
62. End if 
63. Form a link from right(p) to g 
64. 
65. If right(p) is owned by this PE 
66. Push link onto local link heap 
67. Else 
68. Synthesize a link migration packet 
69. End if 
70. End for 
71. { Phase 8: Split links in the LOCAL list. } 
72. For each link in the LOCAL list 
73. If link is a self-link 
74. Subdivide node at left end of link 
75. Form left(p) to left(p) link 
76. If left(p) is owned by this PE 
77. Push link onto local link heap 
78. Else 
79. Synthesize a link migration packet 
80. End if 
81. Form left(p) to right(p) link 
82. If left(p) is owned by this PE 
83. Push link onto local link heap 
84. Else 
85. Synthesize a link migration packet 
86. End if 
87. Form right(p) to right(p) link 
88. If right(p) is owned by this PE 
89. Push link onto local link heap 
90. Else 
91. Synthesize a link migration packet 
92. End if 
93. Else if left end of link should be subdivided 
94. Subdivide node p at left end of link 
95. Form a link from left(p) to g 
96. If left(p) is owned by this PE 
97. Push link onto local link heap 
98. Else 
99. Synthesize a link migration packet 
100. End if 
101. Form a link from right(p) to g 
102. if (right(p) is owned by this PE 
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103. Push link onto local link heap 
104. Else 
105. Synthesize a link migration packet 
106. End if 
107. Else 
108. Subdivide node g at right end of link 
109. Form a new link from p to left(g) 
110. Push onto local link heap if coupling is nonzero 
111. Form a new link from p to right(g) 
112. Push onto local link heap if coupling is nonzero 
113. End if 
114. End for 
115. { Phase 9: Migrate links from previous phases. ) 
116. Route link migration packets to owning PEs. 
117. For each link migration packet just received 
118. Form a link from data in link migration packet 
119. Push link onto local link heap 
120. End for 
121. Reheapify all local link heaps 
122. Set link_error to global maximum link error 
123. Set numlinks to the global sum of all link heap sizes 
124 . End while 

Algorithm 14: Parallel link refinement 

Batch splitting of links is worthy of special mention in Algorithm 14. Not only does it obviate 

the need for a single unified link heap, it has the side effect of making it unnecessary to compute 

link error estimates for newly-created links. In Algorithm 13, we assume that each time a link is 

pushed onto the link heap, a heap insertion is performed, thus preserving its heap structure. 

Algorithm 14 does not need to know link error values until it is completely finished refining a 

batch of links. Thus, the update of link error estimates is also batched as a consequence of split

ting links in batches. 

5.6.3 Reheapiiying 

As mentioned above, the parallel link refinement algorithm refines links in batches, and also 

adds links to the local link heaps in batches. There is insufficient local data on a PE to form the 

link error estimate when links are formed. Rather than perform a communication step when the 

link is formed in order to update the link error estimate, we may delay all such communications 

until the end of the batch and do them all at once. Recall from the section titled "Flaw in area/ 

form factor threshold reasoning" on page 55 that link error depends on the brightness and reflec

tivity of the patches at both ends of a link, as well as the link's coupling value. 

As with Algorithm 14, Algorithm 15 assumes that all PEs execute it at the same time due to 
the global communication. Link heap load balance and link connectivity influence the efficiency of 

Algorithm 15 for the same reason they influence the efficiency of Algorithm 14. 

5.6.4 Hierarchical vector operations 

All operations on one hierarchical vector or between two hierarchical vectors are handled 
largely the same as if the vectors were not hierarchical in nature. Only the nodes at the leaf level 
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I Update the link error estimate for all links. ) 
For each link L in local link heap 

Set p to node at left end of link L 
Set q to node at right end of link L 
{ Phase 1: Handle local links and synthesize ) 
{ brightness/reflectivity request to owner of q. ) 
If q is a local node 

Update the link error estimate using local data. 
Else 

Synthesize a brightness request packet to owner of q 
End if 
Route brightness request packets to their owners 
{ Phase 2: Service remote brightness requests. ) 
For each brightness request packet just received 

Locate the requested hierarchy node 
Synthesize a brightness reply packet to requestor 

End for 
Route brightness reply packets to their requestors 
{ Phase 3: Update remainder of local links using ) 
{ remote brightness information just received. I 
For each brightness reply packet just received 

Update corresponding link's error estimate using remote data 
End for 

End for 
{ Reheapify on the now-valid link error estimates ) 
Perform a standard reheapify operation on the local link heap 

Algorithm 15: Parallel reheapify 

of the hierarchy are operated upon. They represent the smallest level of subdivision of any poly

gon, and are treated as independent variables. As with operations on a traditional vector of num

bers, order is not important in a hierarchical vector operation. Any method of traversing the 

hierarchy may be used so long as it visits each of the leaf nodes exactly once. Values at interior 

hierarchy nodes are not needed by any routine other than the hierarchical matrix-vector multiply. 

That routine updates interior hierarchy nodes for its one vector operand as needed. 

The following operations on hierarchical vectors are necessary to carry out the hierarchical 

radiosity algorithm: copy, initialize to a constant, add, subtract, multiply, invert (element-wise), 

inner product, scale by a constant, and norm. 

5.6.5 Hierarchical matrix-vector multiply 

Figure 18 on page 65 introduces the idea of viewing the links as a dense coupling matrix. 

Since both Jacobi and Conjugate Gradient iteration can be formulated in terms of matrix-vector 

multiply operations, it makes sense to take advantage of the OiN) nature of such an operation (N 

is the number of links). In order to derive an algorithm for performing a hierarchical matrix times 

a hierarchical vector operation, let us manually work through an example using the matrix in Fig
ure 18. The matrix in Figure 18 is a hierarchical matrix of coupling factors. We will require a 

matrix-vector multiplication by a matrix of form factors in the solution process. 
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In the following, we shall perform the operation Fx-^b and denote by Ap the area of patch p, 
by Cp^ the coupling between nodes p and ç, by Fp^ = Cp^/Ap the form factor from p to <7, and by 
Xp the value of the hierarchical vector x at node p. Refer to the section titled "Patch couplings and 
link splitting" on page 38 for a discussion of the mathematics behind link splitting. We begin with 

the scalar equation 

= FqqXQ. (59) 

Since Fqq is not one of the final links in Figure 18, we split it on the left and right to yield the fol
lowing; 

bj = FjjXj +^*12*2 

62 = •^21*1 •^•^22*2* (60) 

We now note that is not a final link, so we split Fjg on the right and fgi o" the left to yield: 

61 = ^11*1+i^i5*5+ ^16*6 

^5 ~ ^Gl^l +-^22*2 

^6 ~ •'^61*1 •*'•^22*2• (61) 

Note that when we split a link on the right, we expand one term into two terms in a single equa
tion. When we split a link on the left, we split one equation into two equations, each with the same 

number of terms as the parent equation. There are now two terminal links in (61), Fjg in the 6^ 

equation, and F^•^ in the 6g equation. Note that C,g = Cgj. These links will not be split any fur

ther. We now split link f in the 6, equation on the left, and Fg, in the 6g equation on the right 

to obtain 

63 - ̂ 11*1 ••••'^35^5 + ̂ 16*6 

64 = ^11*1 •*• ^45*5 ••• ^16*6 

^6 ~ ^53*3 •*• ^64*4 •*• -^22*2 

bg — F 61^1 22*2' (62) 

Now, all that remains to be done is to split in the 63 equation on the right, and F^ in the 6g 

equation on the left. This yields the final set of equations for leaf nodes: 

63 = F y ^ X y +  F ^ - j X - j  +  F 2 g X g  +  F ^ Q X Q  

64 = -^11*1 ••••^45*5 ••••^16*6 

bg = fg]%] +^'22*2 

^7 ~ ^73*3 ^54*4 ••• -^22*2 

bg = -^^83*3 ••• ^54*4 "•• -^22*2" (63) 
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Suppose that PE 0 owns links C^, Cgy, Cgg, that PE 1 owns links Cgg, C^g, C45, and the hierar
chy from Figure 18 is distributed across two processors as shown in Figure 24. 

PEG 
Node 

Node Nodo 

Node Node 

NodeV /Node 

PEO : PE 1 „ 

Figure 24: Decomposition of example hierarchy 

Now, let us examine each of the terms in (63). Note that the terms -Fn*! appear in 

the equations for both 63 and 64. Also note that node 1 is an ancestor of nodes 3 and 4. The term 

FggZg appears in the equations for all leaf nodes which are descendants of node 2. The term ^'54*4 

appears in the equations for all leaf nodes which are descendants of node 5. In fact, all terms of 

the form FpqXg are reused in all leaf descendants of node p. This observation follows directly from 

(44) through (48). 

Let us formulate the irradiance incident upon patch p as follows: 

^P = Zp + ap + Pp (64) 

where: ^ ^p(^q > link contributions at node p, 
ge { L p ]  

{ L p }  is the set of all nodes to which node p  is linked, 

is the sum of all link contributions of all ancestors of node p in the 
hierarchy, and 

Pp is the sum of all link contributions of all descendants of node p in the 
hierarchy. 

We may expand the and terms in the following way: 

~ '^parent (j}) ^ ̂ parent (p)' (65) 

Pp " ̂ left (p) bright (p) P/e/ï (p) ^ Prig A! (p) ' (66) 

These recursions suggest the serial algorithm for hierarchical matrix-vector multiply shown in 

Algorithm 16. A few words are in order about the notation used in this algorithm. We assume that 
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each hierarchy node p stores several quantities: references to its mother and left and right daugh
ter nodes, denoted by p.parent, p.left, and p.right, respectively; a temporary hierarchical 
vector element denoted by p.t; the multiplicand hierarchical vector element denoted by p.x; and 
the resultant product hierarchical vector element denoted by p.v. In vector notation, the opera

tion performed by Algorithm 16 is <- Fx. The Hprep function in Algorithm 16 is used to set the 

( Multiply hierarchical matrix contained in 'heap' by ) 
{ hierarchical vector 'x', and place the result in 'v' . ) 
MatVecMult (root, heap) 
{ 

{ Prepare x vector for subsequent use. ) 
{ Initialize t temporary vector to 0. ) 
Hprep(root) 
{ Accumulate link contributions into t. ) 
For each link L in heap 

p.t += Fpq * q.x 
if (p != g) 

g.t += Fqp * p.x 
End for 
( Propagate t values up and down } 
{ to form matrix-vector product. ) 
Prop{root) 

) 

Hprep(p) 
( 

p.t = 0.0 
If p has daughters 

Hprep{p.left); 
Hprep{p.right) ; 
p.x = (p.left.X * p.left.area + 

p.right.X * p.right.area) / p.area; 
End if 

) 
Prop(p) 
( 

p.v = p.t 
If p has a parent 

p.v += p.parent.v 

End If 
If p has daughters 

Prop{p.left) 
Prop(p.right) 
p.t += p.left.t + p.right.t 
p.v += p.t; 

End if 

I 

Algorithm 16: Serial hierarchical matrix-vector multiply 

hierarchical vector values of interior nodes to the area-weighted average of their daughters' val

ues. This area-based summarization is appropriate for the irradiance vector because it is a vector 
of power densities rather than a vector of powers. Though we are only concerned with hierarchical 
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vector values in the leaf nodes in the final solution, the matrix-vector multiply routine requires 
valid data in all nodes of the multiplicand vector because the links do not just couple leaf nodes. 

Making Algorithm 16 parallel is fairly straightforward. The three phases of Algorithm 16 are 
multiplicand vector preparation, link contribution accumulation, and partial-product propaga

tion. All three phases require interprocessor communication, but they are independent. Let us 
examine them each in turn. 

First, we will examine the preparation phase. The basic operation in this phase is a postorder 

tree traversal, with a node update involving data from each daughter. Below the distribution 
level, dlevel, such an operation is possible with no interprocessor communication because entire 

subtrees exist on one PE. Above dlevel, a PE owning node p only owns one of p's daughters. The 

PE must therefore obtain data from the PE which owns the other daughter. Figure 25 shows with 

PÈO PE4 

ï>ÉO PE2 PE4 

PEO PE3 PE4 PE7 

PEO PE4 PE 1 PEG ]PE2 PEG PE 3 PE7 PE4 PEO PE 5 PE 1 PEG Î>E2 PË7 ÏE3 

Figure 25: Loci of communication in Hprep 

thick lines the relationships between hierarchy nodes where communication must be performed. 

A parallel version of the Hprep function is given in Algorithm 17. One might be curious why Algo
rithm 17 is in two parts. Most of the operations and most of the parallelism in the Hprep function 

lies below dlevel. By first collapsing just up to dlevel, we are able to make all PEs perform useful 

work in parallel in their owned subtrees. Once all PEs have done this, they may come back and 

collapse data from the roots of the subtrees the rest of the way up the hierarchy. 

Next, we shall examine the link contribution phase of Algorithm 16. Recall that a PE owns 

only those links whose "left" end is also owned by that same PE. Also, observe from equation (63) 

that for every form factor of the form Fp^ used, there is also an F^p used. These terms come from 

the link contributions at the nodes connected by the link Cp^. Thus, for every link Cp^ owned by a 

PE, there are two, not one, link contributions made by that link. There are three cases in the 

inner loop of the link contribution phase: 
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{ Collapse area-weighted sums of hierarch- ) 
( ical vector 'x' up the hierarchy. ) 
Hprep(root) 
{ 

Hprep_subtrees(root) 
Hprep_body(root) 

) 
{ Perform the collapse on and below dlevel. } 
Hprep_subtrees(p) 
{ 

p. t = 0.0 
If p has daughters 

Hprep_subtrees{p.left); 
Hprep_subtrees{p.right); 
If (node p is on or below dlevel) and (this PE owns node p) 

p.x = {p.le ft.X * p.left.area + 
p.right.X * p.right.area) / p.area 

End if 
End if 

I 

{ Perform the collapse strictly above dlevel. ) 
Hprep_body(p) 
( 

If (node p has daughters) and (node p is strictly above dlevel) 
Hprep_body{p.right) 
Hprep_body{p.left) 

End If 
If node p has daughters 

If this PE owns the left daughter 
Receive irradiance and area of right daughter from owner 
p.x <= (p. left. X * p. left, area + 

p.right.X * p.right.area) / p.area 
Else if this PE owns the right daughter 

Send irradiance and area of right daughter to owner of node p 
End if 

End if 
) 

Algorithm 17: Parallel hierarchical vector preparation 

Case 1: A link is a composite self-link in which case all data necessary to calculate its contri

bution to the matrix'vector product are local to the PE. A self-link contributes to the partial prod
uct on the PE owning the link only. 

Case 2: A link is not a self-link, but both ends of the link are local to the PE owning the link. 

Here, too, all data to calculate the links contributions are local, but the link makes two partial 

product contributions: one to the node at the left end of the link, and one to the node at the right 

end of the link. In this case, exactly the same operations as in the kernel of the serial link contri

bution loop are executed. 
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Case 3: A link is not a self-link and the node at the right end of the link is owned by another 
PE. In this case, it is instructive to examine the two link contributions in the kernel of the serial 
loop to see where the data to perform each calculation resides. The blocks labeled p in Figure 26 
contain data which is owned by the owner of hierarchy node p. Similarly, the blocks labeled q con

tain data which is owned by the owner of hierarchy node q. Note that both Fp^ and F^p are 
derived from the quantity Cp^, which is owned by the owner of node p. This layout of data sug

gests a three-phase update operation. First, the owners of all nodes p pack up Cp, and Xp values, 

and send them to the owners of the corresponding ç's. These PEs perform the second accumula

tion in Figure 26, pack up values, and send them back to the owners of p. Finally, the owners of 
p perform the first accumulation in Figure 26. 

P q 

Q P P 

Figure 26: Locus of link contribution data 

Combining all three cases leads us to the following algorithm for parallel link contribution 
accumulation (Algorithm 18): 

The final step in hierarchical matrix-vector multiply is the propagation of link contributions, 

or partial products, up and down the hierarchy to form the final products. This process is very 

similar to that already given in Algorithm 17 for hierarchical vector preparation, except that it 

can be performed efficiently in one subroutine rather than two. The places where communication 

must be performed are the same as those in Algorithm 17. The difference being that partial prod

ucts must be propagated both upward and downward rather than just downward. 

5.6.6 Writing the answer file 

As with most scientific applications, the time spent in I/O is no small portion of overall appli
cation time. Most applications, however, do not incur I/O of the same order of complexity as their 

computational kernel. With hierarchical radisity, link subdivision, system solving, and HO are all 

0{N). There exists the possibility that overall application time might be dominated by the typi

cally slower I/O operations. 

The answer from a radiosity rendering (at least in this case) is a list of geometrical patches 

together with their red, green, and blue brightness values. There is no prescribed order in which 

these patches must be arranged in the answer file, so we may feel free to write them in whatever 

order is most convenient. 
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{ Accumulate partial products for hierarchical matrix-vector ) 
{ multiply into hierarchical vector ^t' at each node. } 
Link_contrib(root, heap) 
( 

{ Phase 1: Local link resolution and remote request generation. } 
For each link L in local link heap 

Set p to left end of link 
Set q to right end of link 
If p == q 

p.t += Cpq * p.x / p.area 
Else if q is owned by this PE 

p.t += Cpq * q.x / p.area 
q.t += Cpq * p.x / q.area 

Else 
Synthesize contribution request packet to q with Cpq and p.x 

End if 
End for 
Route all contribution request packets to their destinations 
( Phase 2: Remote right-link-end accumulation and reply. ) 
For each contribution request packet just received 

q.t += Cpq * p.x / q.area 
Synthesize contribution reply packet back to p with q.x 

End for 
Route all contribution reply packets to their originators 
{ Phase 3: Remote left-link-end accumulation ) 
For each contribution reply packet just received 

p.t += Cpq * q.x / p.area 
End for 

) 

Algorithm 18: Parallel link contribution accumulation 

Only the leaf-level patches need be written because interior nodes in the hierarchy are simply 

the union of two or more leaf-level patches. We also know that all leaf-level patches are uniquely 

owned by a single PE due to the hierarchy decomposition scheme. It is, therefore, a simple matter 

for each PE to traverse its hierarchy, and format output records from the leaf-level patches that it 

owns. In the presence of a parallel I/O subsystem, all PEs would be able to write their completed 

output records at once. In the absence of a parallel I/O subsystem, all output records may be con

catenated, and written to a single sequential filesystem. In both cases, output records must be 
written in large blocks to achieve reasonable I/O throughput. The latter case is implemented here, 

and even so presents no major bottleneck (See Figure 28, task "Storer"). 

5.7 Results and Analysis 
The parallel hierarchical radiosity algorithm is implemented in approximately 7,000 lines of 

C++ code on an nCUBE 2 parallel supercomputer. An object-oriented approach was used to com

partmentalize methods for dealing with key data structures such as: polygons, patches, compos

ites, the node hierarchy, the link heap, hierarchical vectors, and the hierarchical coupling matrix. 
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{ Propagate partial products up and down the hierarchy ) 
( to form the final hierarchical matrix-vector product. ) 
Prop(p) 

I 
{ Preorder propagation of t values down into v. ) 
If node p is local 

p.v = p.t 
If (p has right daughter) and (right daughter is NOT local) 

Send p.v value to owner of p.right 
End if 
If p has a parent 

If p.parent is NOT local 
Receive parent p.parent.v value from owner of p.parent 
p.v += p.parent.V 

End if 
End if 
{ Recursion ) 
If p has daughters 

Prop(p.left) 
Prop(p.right) 

End if 
{ Postorder propagation of t values up into t, and accum. into v. ) 
If node p is local 

If (p has parent) and (p.parent is NOT local) 
Send p.t to owner of p.parent 

End if 
If (p has right daughter) and (right daughter is NOT local) 

Receive value of p.right.t from owner of p.right 
End if 
If p has daughters 

p.t += p.left.t + p.right.t 
End if 
p.v += p.t 

End if 
) 

Algorithm 19: Parallel partial product propagation 

5.7.1 A visit from reality 

Section 5.5 took great care to efficiently balance hierarchy nodes across a group of PEs, and 

distributed the links in such a way as to minimize communication and spread them as evenly as 

possible. This was done, however, in the absence of the knowledge of any specifics about the char

acter of how links will be split. As we shall see, the character of how links will be subdivided, and 

the distribution of connectivities in the hierarchy, is highly data dependent. Figure 27 shows a 

sample breakdown of the time spent by each PE in each of the nine phases of Algorithm 14. The 
most striking feature in the graph is the disastrous imbalance in the amount of time spent in 

phases 4 and 7, the remote and geometry-only link splitting phases. Similar imbalance exists in 

the communications load across the PEs for other phases. Worse yet, no choice of dlevel or amount 

of further link refinement evens out this imbalance. 
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Cumulative time in Refine{) by Phases vs. PE Number 
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Figure 27: Link contribution phases vs. processor for original algorithm 

35 

In order to fix the problem, we must understand its causes. In this case, it is caused by the 

highly nonuniform nature by which links connect hierarchy nodes on different PEs. We have 

endeavoured to balance the number of links that each PE owns through judicious choice of a hier

archy decomposition method coupled with link ownership based on the left ends of the links. Even 

so, there is over a three to one ratio between the size of the largest and smallest node link heaps. 

This creates load imbalance in both the solver and link refinement tasks. 

Since it appears that Principle 3 and Principle 4 are costing more performance due to load 

imbalance than they gain by locality of reference, let us consider alternatives that do not follow 

the axiom. One way to even out the link heaps is to abolish Principle 4 and dlevel and continue 

alternating ownership of hierarchy nodes down the hierarchy indefinitely. This would eventually 

even out the local heap sizes, and the left-link-end distribution across the PEs without making 
the communication any worse in the link refinement or link contribution algorithms. It would, 

however, have a disastrous impact on the communications in the vector preparation and partial 

product propagation algorithms. These algorithms rely on short messages at every hierarchy 

node, and would thereby suffer greatly in terms of performance. 
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A less disastrous option is abolish Principle 3, and spread the links out among the PEs evenly 
regardless of hierarchy node ownership. This scheme has the benefit of being able to equalize all 
local heap sizes and link refinement loads regardless of data-dependent effects. It also does not 

affect the hierarchy decomposition or the communication load of either hierarchical vector prepa

ration or partial product propagation. It has the disadvantage of doubling the communication load 

of link refinement and link contribution. But it is only a doubling. This contrasts with a scheme 

which would much more than double the worst kind of communication traffic in vector prepara

tion and partial product propagation. 

The remainder of this chapter will assume revised forms of the algorithms for parallel link 

refinement, parallel link contribution accumulation, and parallel reheapification. These algo

rithms are generally simpler in form, but require more communication. 

Algorithm 20 is the revised parallel link refinement algorithm. It has fewer phases than Algo
rithm 14, and a less confusing structure. At the same time, we may also pack up node brightness 
and reflectivity data with all reply packets to be used in the link error estimate. This small addi
tion obviates the need for a reheapify step after every batch of link splittings. 

Accumulating link contributions in parallel is a bit more tricky. The added complication is 

that now, potentially three different PEs own the data necessary to calculate the link contribu

tions. One PE owns the coupling between nodes p and q, one PE owns node p, and one PE owns 

node q. The solution shown in Algorithm 21 involves two steps. First, the PE owning a particular 

link Cpç, will send the coupling and the values of p and q to the two PEs owningp and q. Then, 
the PEs owning p and q will exchange their respective values of Xp and x^. The link contribution 

may then be completed locally on the PEs owning/? and q using data from the two communication 

steps. 

( Accumulate partial products in each hierarchy node. } 
{ Phase 1: Synthesize exchange packets to p and q. ) 
For each link L in local link heap 

Synthesize an exchange packet to owner of each end of link 
End for 
Route exchange request packets to their owners 
{ Phase 2 : Service exchange requests. ) 
For each exchange packet just received 

Locate the requested hierarchy node 
Synthesize a brightness packet to owner of other end of link 

End for 
Route brightness packets to their destinations 
{ Phase 3: Calculate link contributions on p and q. } 
For each brightness packet just received 

Accumulate link contribution into local hierarchy node 
End for 

Algorithm 21: Revised parallel link contributions 
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Set numlinks to the global sum of all link heap sizes 
Set link_error to global maximum link error 
While (numlinks < reqlinks) and (link_error < solv_error) 

{ Phase 1: Remove a batch of links from the local heap. ) 
For i = 1 to batchsize 

Pop a link from the local link heap 
If the link's error is less than solv_error 

Push link back onto local heap 
Exit for loop 

End if 
Place the link into the list of links to be split 

End for 
( Phase 2: Synthesize splitting and geometry requests to the ) 
( owners of the nodes at both ends of each link to be split. | 
For each link L to be split 

If L is a self link 
Synthesize a single splitting request to the owner 

Else if the link should be split on the left 
Synthesize a splitting request to owner of left end 
Synthesize a geometry request to owner of right end 

Else 
Synthesize a splitting request to owner of right end 
Synthesize a geometry request to owner of left end 

End if 
End for 
Route all request packets to their destination PEs 
{ Phase 3: Service requests for splittings and geometry data ) 
{ and pack up reply messages to the sending processor. ) 
For each request packet just received 

If the request is a splitting request 
Subdivide the requested hierarchy node 
Pack up a splitting reply packet to the requestor 

Else if the request is a geometry request 
Pack up a geometry reply packet to the requestor 

End if 
End for 
Route all reply packets back to the requesting PEs 
I Phase 4: Split links using information from remote owners. ) 
For each reply packet just received 

Locate the link to which this packet belongs and record it 
End for 
For each link in the list of links to be split 

If the link is a self-link 
Form three new link using data received from other PEs 

Else if the link should be split on the left 
Form two new links using data received from other PEs 

Else 
Form two new links using data received from other PEs 

End if 
Push the new links onto the local link heap 

End for 
End while 

Algorithm 20: Revised parallel link refinement 
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{ Update the link error estimate for all links. ) 
{ Phase 1: Synthesize exchange packets to p and q. ) 
For each link L in local link heap 

Synthesize a brightness request packet to owner of left end 
Synthesize a brightness request packet to owner of right end 

End for 
Route brightness request packets to their owners 
{ Phase 2: Service brightness requests. ) 
For each brightness packet just received 

Locate the requested hierarchy node 
Synthesize a brightness reply packet to the requestor 

End for 
Route brightness reply packets to the requestors 
( Phase 3: Update link error estimates. } 
For each link L in local link heap 

Update error estimate for L using brightness data just received 
End for 
{ Reheapify on the now-valid link error estimates ) 
Perform a standard reheapify operation on the local link heap 

Algorithm 22: Revised parallel reheapify 

Reheapifying is fairly straightforward, but again requires more communication than before. 

Brightness request packets must be sent off to the PEs owning the hierarchy nodes at both ends of 

all links in the local link heap. These owners must then send the brightness data back to the 

requesting processor. Then, the error estimate may be updated for each link using the brightness 

data received from other PEs. Algorithm 22 is the pseudocode for this revised version of parallel 

reheapify. 

V^th the link heap delocalized, any convenient method may be used to distribute the links 

across the PEs. There are two important factors to consider when distributing the links: local link 

heap size and link refinement load. The link heap sizes can be equalized very easily by calculating 

the average local heap size, and redistributing excess links from PEs having a greater than aver

age number. Link refinement load is a bit more problematic. We can, however, note that links 

which are closer to the top of a heap will probably be split sooner than link further down in the 

heap due to their larger estimated link error. Thus, if the top several elements of all link heaps 

are periodically shuffled randomly around the PEs, then the link subdivision load should be 

equalized as well. The next section presents empirical evidence to support this claim. 

5.7.2 Revised algorithm 

Shown below in Figure 28 is the output from a typical run on 64 nCUBE processors using the 

revised link heap decomposition strategy and Algorithm 20, Algorithm 21, and Algorithm 22. 

Note the logarithmic decrease in the maximum link error, and the exponential increase in the 

number of links as the algorithm progresses. The theoretical maximum performance for 64 

nCUBE processors, in terms of MFLOPS (millions of floating-point operations per second) is 

about 200 MFLOPS. We see the majority of the time spent solving the problem lay in the tasks 
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Reader: Read 75 polygons from 'geom' file. 
Distribution starts at level 12. Chunk size is 0. 
Red / Grn / Blu Residual Link Resid Links Iterations 

1 .OOe+10 
1.90e+02 
1.90e+02 
1.90e+02 
1.90e+02 

1.90e+02 

1.90e+02 
1.90e+02 
1.90e+02 
7 .30e+01 

30e+01 
30e+01 
30e+01 
90e+01 
90e+01 
90e+01 

1.20e-01 
1.20e-01 
1.20e-01 
1.20e-01 
l,20e-01 
7.80e-02 
7.80e-02 

,80e-02 

.80e-02 
,80e-02 
,80e-02 

4.50e-02 

4.50e-02 

OOe+10 
30e+02 
30e+02 
30e+02 

30e+02 
7.20e+01 
7.20e+01 
7.20e+01 
7 .20e+01 
7.20e+01 
7.20e+01 
7.20e+01 
7.20e+01 
7.20e+01 
7.20e+01 
2.20e+01 

40e-01 
, OOe-01 
,OOe-01 
,OOe-01 
,OOe-01 
OOe-01 
.OOe-01 
lOe-02 

, lOe-02 
, lOe-02 
, lOe-02 
lOe-02 

, lOe-02 

l.OOe+10 
2.50e+02 
2.50e+02 
2.00e+02 
2.00e+02 
2.00e+02 
2.OOe+02 
8.70e+01 
8.70e+01 
8.70e+01 
8.70e+01 

50e+01 

50e+01 
50e+01 
50e+01 
50e+01 

1.30e-01 
1.30e-01 
1.30e-01 
8.80e-02 
8.80e-02 
8.80e-02 
8.80e-02 
8.80e-02 
8.80e-02 
2.90e-02 
2.90e-02 
2.90e-02 
2.90e-02 

3.8820e+03 
3.8820e+03 
2.4560e+02 
1.5560e+03 
2.2360e+02 

9.1350e+02 

1.9730e+02 
3.1990e+02 
1.9110e+02 
2.9150e+02 
8.6420e+01 

1810e+02 
3040e+01 
3200e+02 
2410e+01 
95206+01 

1.4390e-01 
2.7070e-01 
1.2510e-01 
1.9330e-01 
1.2190e-01 
1.2260e-01 
1.0060e-01 

1.5770e-01 
8.7630e-02 
1.5480e-01 
7.8170e-02 
1.1360e-01 

1.0460e-01 

1002 RGB 
1002 
1139 B 
1139 
1198 GG 
1198 
1291 B 
1291 
1348 RR 
1348 
1828 BB 
1828 

2078 RR 
2078 
2167 GG 
2167 

551976 GGG 
551976 
630864 BBB 
630864 
646256 RRR 
646256 
778404 GGG 
778404 
890649 BBB 
890649 
994319 RRR 
994319 

1002190 RGGBB 

Total form factor = 1.04743 
Links in hierarchy = 1002190 
Patches in hierarchy = 35715 

Average links per node = 14.0306 
Totally visible links = 788985 
Partly visible links = 213205 
Occluded links = 26986 

Approximate memory usage: 56671052 

1000000 interactions: 
Task Seconds Operations 

Reader 
Setup 

Solver 
Storer 

5.41 
418.69 
572.29 
83.21 

TOTALS 1079.60 

3586 
9024547348 
250102686 

7512750 
9282166370 

MFLOPS 
0.000663 

21.554335 
0.437019 
0.090282 
8.597745 

% of Time 
0.5 % 

38.8 % 
53,0 % 
7.7 % 

100.0 % 

Figure 28: Typical output from a 64 PE run 



www.manaraa.com

98 

Cumulative time in Refine () by Phases vs. PE Number 
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Figure 29: Time spent in link refinement phases vs. processor 

called "SetUp," and "Solver." SetUp corresponds to the link refinement process, and supporting 

operations, and Solver corresponds to the iterative radiosity solution. Further accounting of the 

Solver task shows that the vast majority of time spent in Solver is consumed by the link contribu
tion part of parallel hierarchical matrix-vector multiply shown in Algorithm 18. The apparently 

poor showing in Figure 28 in terms of MFLOPS serves to emphasize the communications-inten

sive nature of the algorithm and the need for further investigation into the algorithm's behavior 

in a practical setting. 

The parallel code has been highly instrumented to collect link distribution statistics, node 

hierarchy statistics, and timings for various sections of the code. Such data has been extremely 
useful in locating sources of inefficiency, and in developing the aforementioned hierarchy decom

position strategies. In the following pages, graphs are presented which have been constructed 

from this performance information. 

The first performance graph, shown in Figure 29, shows the breakdown of time spent in the 

parallel link refinement of Algorithm 14. By far the dominant phase is the one labeled "Link 

Split." This phase is analogous to phases 4 and 7 in Algorithm 14. The next most dominant is the 
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30 
Link contribution phases vs. PE Number 
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Figure 30: Time spent in link contribution phases vs. processor 

phase labeled "Reply to Requests." This phase is analogous to steps 31 and 53 in Algorithm 14. All 

other phases of link refinement consume less than two seconds each. In all cases, the load balance 

is excellent. 

Figure 30 shows a graph of the time taken by the various link contribution phases, as well as 

time spent in communication, and time spent in the link load balancer. The first three symbols in 
the legend correspond to the three phases of Algorithm 21. The next two symbols correspond to 

the two message routing steps in the same algorithm. The final symbol corresponds to the total 

amount of time spent in the link heap balancing algorithm. One may notice that the vast majority 

of time consumed by the link contribution algorithm lay in the two communication phases. Load 

balance appears to be good with a few minor exceptions. 

The next graph, shown in Figure 31, is a profile of link connectivity for both the left and right 

ends of all links. The left-link-end ownership is shown as "Links from," and right-link-end owner
ship is shown as "Links to." The graph was constructed by histogramming the owning PE number 

of the left end of all links on all PEs. In other words, a point on the graph shows the number of 

links for which the hierarchy node at the left (or right) end is owned by a certain PE. This graph 
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Link connectivity vs. PE Number 
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Figure 31: Histogram of link connectivity vs. processor number 

does not give any information on how well the local link heaps are load balanced. It indicates how 

well the hierarchy distribution scheme has spread out node ownership among the PEs. Note that 

the total number of links connecting to a PE is roughly constant except for PE 30. PE 30 owns a 
bright light source which the hierarchy subdivision strategy has not distributed across the PEs. 

Either a larger dlevel or a larger light source would more evenly distribute the links to this light 

source. 

Communication volume for one link refinement step is shown in Figure 32. Again, the com

munication is well-balanced with the exception of the load on PE 30, which has an inordinate 

number of receives. This indicates that the link connectivity during the time of the refinement 
step was more highly connected to a hierarchy node or nodes owned by PE 30. Methods for reduc

ing overall communication burden are presented in the next chapter. 

The final performance graph plots the overall performance of the algorithm against the num

ber of processors used. The absolute performance is comparable over a range of problem sizes. 

However, the performance scales somewhat less than linearly for the range of machine sizes 

shown for a fixed-size problem, There are two main reasons for this. As the number of PEs 
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Message Volume vs. PE Number for 1 Route Phase 
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Figure 32: Time spent in a single refine step vs. processor number 

increases for a fixed size problem, the total amount of data that must be transmitted between PEs 

increases due to an increased chance that the hierarchy nodes referenced by a PE's local links are 

nonlocal. The second reason has to do with the nature of the communication pattern itself Sup

pose each PE wishes to send iV packets to other randomly selected PEs. The routing operation will 

take place in Inproc stages with each stage moving an average of 0.5 xN packets between each 

pair of PEs. Thus, the total time for a routing operation involving N packets will be 

^rou(e = logo?) (67) 

where a is the constant setup time for a message, 

(3 is the time it takes to transmit one packet, and 

p is the number of PEs used. 

With a fixed-size problem, N gets smaller as the links get spread out over more PEs. Thus, we 

may model the overall time take by the hierarchical radiosity algorithm as 
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MFLOPS vs. Number of PEs 
100 

lOK Links — 
50K Links H— 

lOOK Links -EH-
Linear 

10 

10 100 1 
Number of PEs 

Figure 33: Performance vs. number of PEs 

where y is constant overhead time for the whole algorithm, 

S is the time to process one link to completion, and 

N is the number of links created. 

The first term in (68) is constant time taken to load the program onto the PE array, read in the 

problem geometry description, and create the initial hierarchy. Note that all these operations are 

independent of the number of processors used, and the number of links to be created. The second 

term accounts for all of the 0(N) work associated with setting up and creating link, traversing the 

hierarchy, and solving the system. The third and final term accounts for the time spent routing 

packets among the PEs during link subdivision, reheapify operations, and matrix-vector multiply. 
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CHAPTER VI 

SUMMARY AND FURTHER RESEARCH 

6.1 Summary 
In Chapter I, the fields of nonrealistic and realistic image synthesis are introduced, and two 

key approaches to realistic image synthesis are also presented. Several parallel architectures 

with applications to realistic image synthesis, and one parallel ray tracing code are also 
described. Chapter II details the realistic image synthesis method of radiosity, and presents a way 

of formulating the radiosity equation as a symmetric system. Various solution methods are ana
lyzed both theoretically and experimentally for their suitability to the radiosity application. In 

Chapter III, the concept of a hierarchical method is introduced. The origins of the hierarchical 
methods are traced through the astrophysics literature, and through their introduction into the 

computer graphics community. Chapter IV presents several enhancements to the two existing 
hierarchical radiosity methods and explains their significance and benefits. Finally, Chapter V 

details the construction of a parallel code to implement the enhanced hierarchical radiosity 

method on an nCUBE 2 parallel supercomputer. Performance is analyzed, shortcomings discov

ered, and methods to deal with them either proposed or implemented. 

The renderer presented in Chapter V is the first and only parallel implementation of the hier

archical radiosity method to date to the knowledge of this author. As with many initial ventures 

into making a new class of algorithm parallel, the absolute performance realized is not impres

sive. However, it deals with the key issues involved in making the algorithm parallel, and paves 
the way for future analysis and improvements. 

6.2 Further research 
6.2.1 Optimizations to existing code 

Clearly, there is still much room for improvement in the performance of the parallel hierarchi

cal radiosity implementation given in Chapter V. As it is an extremely communication-intensive 

algorithm, the most gains will be had by optimizing the communication patterns, especially in the 

linear equation solver. One can observe that there is significant reuse of values during the link 

refinement, link contribution, and reheapify operations. The potential for a drastic reduction in 
communication volume exists by exploiting this data reuse. At present, a message is being gener

ated for every reference to a particular Xp when, in fact, fewer messages would suffice. 

6.2.2 Other areas of investigation 

Many other avenues of research lay open to further scrutiny with the introduction of hierar

chical methods. Hierarchical methods have been applied to a rather narrow class of physical prob

lems to date (gravitational TV-body, and diffuse radiosity transport). Many other physical problems 
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exist for which hierarchical solution methods might be beneficial such as finite element methods, 
weather modeling, molecular modeling, and radar cross-section estimation. All of these problems 
have feature sets which can be approximated to varying degrees of accuracy on multiple resolu

tion levels. 

Furthermore, the specific interpretation of the hierarchical method as applied to the radiosity 
problem is still not completely defined. Several specific issues are discussed below. 

6.2.2.1 Exact coupling factors 

All existing hierarchical radiosity methods approximate the coupling between patches to some 
level or another. The quadruple integral for computing coupling factors, (14), is difficult to solve in 

closed form for general surfaces. However, if the surfaces are sufficiently restricted in their gener

ality, a tractable integration problem might be found, perhaps with the aid of Stokes' theorem 

[Sparrow 78]. If an expression for the exact coupling were found, then there would be no coupling 

factor estimate error, and some other quantity would have to be found to drive the link refinement 
process. 

6.2.2.2 Discretization error 

Discretization error is mentioned en passant in the section titled "Alternation of error types" 

on page 46. This form of error has not been rigorously quantified by any radiosity methods to date, 
and thus, is not well accounted for while balancing link error against solution error. If a tractable 

expression for the exact coupling between two arbitrary patches is ever found, an understanding 

of discretization error will become mandatory. No longer will coupling estimate error be able to 

drive link refinement. 

Discretization error is a measure of how well a continuously varying function (the continuous 

radiosity solution) is approximated by a piecewise constant function (patch brightnesses). Thus, it 

is related to patch geometry, the brightness gradient across a patch, and the error (if any) present 

in couplings to the patch. The brightness gradient across a patch is, in turn, related to the cou

pling gradient across a patch. Even in the presence of exact coupling factors, this gradient will not 

be known. Regardless of what factors influence discretization error, it is desirable to formulate it 

in terms of power so that it may be compared against solution error for purposes of driving the 

link refinement process. 

One immediate application for discretization error measure is in dealing with the tartan arti

fact. Although rowsum correction minimizes the tartan artifact, a more elegant solution is desir

able. The tartan artifact is not caused by errors in coupling factor estimates. Even if exact patch 

couplings are known, experiment has shown that the tartan artifact remains. The artifact is much 
more heavily influenced by the choice of patch subdivision near corners than it is by coupling esti

mate errors. 

An immediate consequence of knowing more about discretization error will come in the form 

of more intelligent choices for patch subdivision. Hierarchical radiosity renderers now either sub

divide a patch equally into two or four subpatches. If more is known about how subdivision will 
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affect the brightness solution, subdivision can be modified such that discretization error is 
reduced with patch subdivision, not just coupling factor error. This may mean splitting a patch 

into unequal areas, or along a different subdivision line, or both. Another important consequence 
affects rendering curved surfaces. Presently, curves surfaces must be tessellated a priori, and 

dealt with as a fixed set of flat polygons. A more efficient approach would be to represent a curved 
surface as a single object, and tessellate it adaptively dwn'mg (Ae solution process based on the cur

rent viewpoint and lighting conditions. Such an approach will create far fewer tessellation poly

gons for a given level of discretization error and solution error than a flat a priori tessellation of 

the same curved surface under the same ambient conditions. 

6.2.2.3 Specularity 

Perhaps the most interesting avenue of future research with the hierarchical radiosity 

method lies in modeling specular effects. In order to obtain the data necessary data to evaluate a 
specular shading model on a surface, interactions would have be between three patches, not just 

two. This corresponds well with the notion of the three-point transport geometry shown in Figure 
1 on page 4. A hierarchical scheme using these three-ended links, or bonks, would concentrate its 

effort in areas of high specularity and high brightness while expending much less effort in areas 

of low specularity or low brightness. This is similar to the existing diffuse method which concen

trates it effort in areas of high brightness while expending much less effort in area of low bright
ness. 
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APPENDIX 

The source code to an enhanced serial radiosity renderer is published in this appendix. It is 
intended to give the reader a basic understanding of the implementation details involved in a 

hierarchical radiosity code. Source to the parallel hierarchical radiosity renderer is too lengthy 
and machine specific to be useful here. The following source is written in ANSI standard C in sev

eral source modules. Each source module is delineated in the text by a section heading. 
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A.1 Header file slaLh 

/•**** J 
/* File: slal.h 
/* Version: %G% %W% 
/* Type definitions for all data types used in the SLALOMS3 benchmark 
/**•**/ 

•ifndef 
•define 

SLAL H 
"slal 'h" 

•include 
•include 
•include 
•include 
•include 

•ifndef 
•define 
•define 
•endif 

<stdio.h> 
<stdlib.h> 
<math.h> 
<string.h> 
<sys/time.h> 

TRUE 
FALSE 0 
TRUE (! (FALSE) ) 

Vector[3]; 

0, links = 1, 
2, vectors = 4, 
8, matrix 16, 
32, isect = 64 

/**/ 
/* Forward type declarations 
/**/ 
typedef struct Node Node; 
typedef struct Link Link; 
typedef struct HierVec HierVec; 
typedef struct LinkQueue LinkQueue; 
typedef struct LinkHeap LinkHeap; 

/**/ 
/* Typedefs 
/**/ 
typedef float 
typedef enum ( 

none = 
refine = 
iterate •= 
hierarchy» 

) debugflag; 
typedef enum { 

visible, partial, blocked 
) Visible; 
typedef enum { 

composite, 
) NodeType; 

/**/ 
/* Constants 
/**/ 
•define 
•define 
•define 
•define 
•define 
•define 
•define 
•define 

patch 

defchunksize 
deflinkchunksize 
maxhiervec 
maxpoly 
maxvert 
eps 
big 
PI 

1024 
16  
24 
1024 
1024 
((float)le-5) 
((float)le+10) 
((float)3.1415926) 

/**/ 
/* Externals 
/**/ 
extern debugflag debug; 
extern int solelemR, 

solelemG, 
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solelemB; 
extern int rhoelemR, 

rhoelemG, 
rhoelemB; 

extern LinkHeap *heap; 

/**/ 
/* Queue of Links 
/**/ 
struct LinkQueue 

Link 
int 

I; 

•p; 
head, 
tail, 
alloclen; 

/**/ 
/* Priority queue of Links 
/**/ 
struct LinkHeap { 

Link 
int 

*p; 
tail, 
alloclen; 

}; 

/ * * /  
/* Definition of the parent node type. 
/**/ 
struct Node ( 

/* Data structure linkage */ 
Node *left, *right; 
Node *parent; 

/* Vector storage */ 
float t; 
float e[maxhiervec] ; 

/* Node geometry */ 
Vector normal; 
Vector vertex[4]; 
Vector center; 
float area; 

/* Miscellaneous */ 
int id; 

); 

/* Pointer to Link storage. 
/* Index of head element. 
/* Index of tail element. 
/* Allocated list length. 

/* Pointer to Link storage. 
/* Index of tail element. 
/* Allocated list length. 

/* Pointer to daughter patches. 
/* Pointer to mother patch. 

/* Temporary storage. 
/* Storage for HierVecs. 

/* Normal of the patch in 3-space. 
/* Vertices of the polygon. 
/* Center of the patch in 3-space. 
/* Magnitude of normal vector. 

/* Unique node ID number. 

* /  
* /  
* /  
V 

*/ 
*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

*/ 
V 
*/ 
*/ 

*/ 

/**/ 
/* HierVec type. This object is, in fact, merely a front-end to the 
/* procedural hierarchical vector operations defined as part of the Node type. 
/**/ 
struct HierVec { 

int index; /* Index of vec. elem. in patch hier. */ 
Node *hier; /* Hierarchy in which this vector is */ 

/* stored. */ 
); 

/**/ 
/* Type of elements which will be used in queue and heap types below 
/**/ 
struct Link ( 

Node *p, *q; 
float cpq, epq, err; 
Visible vis; 

); 

•endif 
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A.2 Header file proto.h 

/**/ 
/* File: proto.h 
/* Function prototypes for SLALOM93 benchmark 
/* Version: %G% %W% 
/**/ 

•ifndef 
•define 

_PROTO_H 
PROTO H~ 

/**/ 
/* Prototypes for major SLALOM functions 
/**/ 
int main (int argc, 

char *argv[]); 

void Usage (char *argv[]); 

void Meter (int nlink, 
double ops [) , 
double sec[j); 

void Reader (Node *moan, 
int rho[1, 
int emiss[], 
Node **polygons 
int *npoly, 
double *work); 

void Refsol (Node *moan, 
int rho[), 
int emiss[], 
int x[] , 
int reqlinks, 
int area, 
int p. 
int rowsums, 
double sec[], 
double work[1, 
int stats[)); 

float Solver (Node *moan, 
int rho, 
int emiss, 
int X, 
float epsilon. 
int area, 
int P/ 
int rowsums. 
double *work); 

void Storer (Node *moan. 
int x[l, 
Node **polys. 
int npoly. 
double *work); 

void What (int nlink. 
double ops [] , 
double sec [ ]); 

double When (void); 

void Writegeom (Node *P. 
FILE *fp. 

/* Argument count */ 
/* Argument strings */ 

/* Argument strings */ 

/* Number of links to create */ 
/* FLOPS for each phase */ 
/* Time for each phase */ 

/* Pointer to root hier node */ 
/* Reflectivity HierVecs */ 
/* Emissivity HierVecs */ 
/* Dyn. alloc, list of poly* */ 
/* Number of polygons read */ 
/* IFLOPs to do the job */ 

/* Pointer to root hier node */ 
/* Reflectivity HierVecs */ 
/* Emissivity HierVecs */ 
/* Solution radiosities */ 
/* Requested number of links */ 
/* Hierveo of patch areas */ 
/* Hiervec temporary */ 
/* Coupling matrix row sums */ 
/* Seconds for each phase */ 
/* FLOPS for each phase */ 
/* Link statistics */ 

/* Pointer to root hier node */ 
/* Reflectivity HierVec */ 
/* Emissivity HierVec */ 
/* Solution radiosities */ 
/* Required solution accuracy*/ 
/* Hiervec of patch areas */ 
/* Hiervec temporary */ 
/* Coupling matrix row sums */ 

*/ 

/* Pointer to root hier node */ 
/* Solution radiosities 
/* List of polygon pointers 
/* Number of initial polys 
/* #FLOPs to do the job 

/* 
/* 
/* 

No. of links in solution 
FLOPS for each phase 
Seconds for each phase 

/* Timer call 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 

*/ 

/* Pointer to hierarchy node */ 
/* Pre-opened answer file */ 
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void Write] 

float Cfest 

void Refine 

int do. /* Red radiosity slot number */ 
int dl. /* Blu radiosity slot number */ 
int d2, /* Grn radiosity slot number */ 
double *work); /* #FLOPs to do the job */ 

(FILE *fp) ; /* Interactions file */ 

(Node *moan, /* Pointer to root hier node */ 
Node *P. /* Pointer to hierarchy node */ 
Node /* Pointer to hierarchy node */ 
float *err. /* Est. of error in coupling */ 
Visible *vis. /* Visibility of the link */ 
double *work, /* #FLOPs to do the job */ 
int stats[]); /* Link statistics */ 

(Node *moan. /* Pointer to root hier node */ 
int *reqlinks. /* # of links after refine */ 
float epsilon. /* Req'd refinement accuracy */ 
double *work. /* #FLOPs to do the job */ 
int stats[)); /* Link statistics */ 

/**/ 
/* LinkQueue functions 
/**/ 
LinkQueue *Lqalloc(void) ; /* Construct a new LinkQueue. */ 
void Lqfree(LinkQueue*) ; /* Destroy a Linkqueue. */ 
void Lqenqueue(LinkQueue*, Link) ; /* Enqueue an element at head. */ 
Link Lqdequeue(LinkQueue *); /* Dequeue an element from tail. */ 
int Lqlength(LinkQueue *); /* Return # of Links in queue. */ 
void Lqextend(LinkQueue *, int); /* Extend queue to a new size. */ 
void Lqprint(LinkQueue *); /* Pretty-print the queue. */ 

/**/ 
/* Priority 
/**/ 
LinkHeap 
void 
void 

Link 

void 
void 
void 
void 
void 

queue of Links 

*Lhalloc(void); 
Lhfree(LinkHeap*); 
Lhenqueue(LinkHeap*,Link, 

Lhdequeue(LinkHeap *, 

Lhclear(LinkHeap *); 
Lhheapify(LinkHeap *, 
Lhrebuild(LinkHeap *) 
Lhextend(LinkHeap *, 
Lhprint(LinkHeap *); 

/* Construct a new LinkHeap. 
/* Destroy a LinkHeap. 

int[)); 
/* Enqueue an element at head, 

int[ ]); 
/* Dequeue an element from tail. 
/* Empty out the heap, 

int); /* Reheapify due to new element. 
; /* Rebuild heap from scratch, 
int); /* Extend the heap to new size. 

/* Pretty-print the heap. 

*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/**/ 
/* Link functions 
/**/ 
void Lupdate(Link *); 

/**/ 
/* Hierarchy node functions 
/**/ 
Node *Nodealloc(NodeType); 
void Nodefree(Node *); 
void Nodecopy(Node *, Node * 
void Nodeinit(Node *); 
int Getlevel(Node *); 
int Numelem(Node *); 
int Numleaves(Node *); 
void Subdiv(Node *); 
void Makepoly 

(Node *, Vector, Vect 
void Makecomp(Node*, Node*, 
Visible Occlusion 

(Node *moan. Node *p 

/* Update epq element based on current */ 
/* values in solelem[RGB] and cpq. */ 

/* Allocate a new node structure.*/ 

); 
/* Free up a tree of Nodes, 
/* Copy a node, 
/* Initialize center,normal,etc. 
/* Return Node's level in hier. 
/* Return the number of nodes. 
/* Return number of leaf nodes. 
/* Subdivide a polygon. 
/* Init. polygon from 4 verts, 

or. Vector, Vector); 
Node*); /* Init. composite from 2 polys. 

/* Determine if p visible from q. 
Node *q, double *work); 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
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void Nodeprint (Node *, int, int.) ; /* Pretty-print a hiervec. 

/**/ 
/* Hierarchical 
/**/ 

vector functions 

int 
void 
void 
void 
void 
void 
void 

void 
void 
void 
void 
float 
void 
void 
void 
void 
float 
float 
void 
void 
void 

void 

Halloc (void); 
Hfree (int d); 
Hprep(Node *, int); 
Prop(Node *, int); 
Propup(Node *, int); 
Propdn(Node *, int); 
MatveemuIt 

(Node *nd, int b, int x); 
Hadd(Node*, int, int, int); 
Hsub(Node*, int, int, int); 
Hmult(Node*, int, int, int); 
Hscale(Node*,int,int,float); 
Hdot(Node *, int, int); 
Hneg(Node *, int, int); 
Hinvert(Node *, int, int), 
Hcopy(Node 
Hfill(Node 
Hnorm(Node *, 
Hinfnorm(Node 
Hgetarea(Node 
Hprint(Node * 
Hmma 

(Node *, int, 
Hmsmsmn 

(Node *, float 

int, 
int, 
int) 
*, int) 
*, int) 
int) ; 

int) 
float), 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

int, int, int); 

*, int, int, int. 

/**/ 
/* 3-veotor functions 
/**/ 
void 
void 
float 
void 

Vzero (Vector); 
Vprint(Vector); 
Vmag(Vector); 
Vscale(Vector, Vector, float), 

/ * * /  
/* Macros 
/**/ 
•define 
•define 
•define 
•define 
•define 
•define 
•define 
•define 

Allocate vector and return •. */ 
Free a vector. */ 
Bubble area-weighted sums up. */ 
Trial optimization of up & dn */ 
Third phase of matveemuIt. */ 
Fourth phase of matvecmult. */ 
Multiply coupling matrix by */ 

vector X giving vector b. */ 
Vector d +- vector s. */ 
Vector d +» vector a. */ 
Vector d *= vector s. */ 
Vector d *= scalar s. */ 
Return dot product of d and s.*/ 
Vector d - -d. */ 
Vector d - 1.0 / vector d. */ 
Vector d = vector s. */ 
Vector d - constant. */ 
One norm of a vector. */ 
Infinity norm of a vector. */ 
Get area of each node into vec*/ 
Pretty-print a vector. */ 

int, int, int); 

/* Assign zero to a vector. */ 
/* Pretty-print a vector. */ 
/* Magnitude of vector */ 
/* Scale vector by a scalar. */ 

Fmax (a, b) 
Fmin (a, b) 
Vcopy(d,a) 
Vdif f (d, a, b) 
Vsum(d,a,b) 
Vdot(a,b) 
Vmagsq(a) 
Vcross(d,a,b) 

(((a) > (b)) ? (a) : (b) ) 
(((a) < (b)) ? (a) : (b) ) 
(d[0]=a[0], d[l)-a[l], d[2]-a[2]) 
(d(01-a[01-b[01, d[ll-a[ll-btl], d[21-a[2]-b[2]) 
(dtOl-alOl+btO], d[l]-a[l]+b[l), d[2]-a[2]+b[2]) 
(a[0]*b[01 + a[l]*b[l] + a[2]*b[2)) 
(a[0)*a[0] + a[l]*a[l] + a[2]*a[2]) 
(d[01 - a[l]*b[2) - b[l]*a[2), \ 
d[l] = b(01*a[2) - a[0]*b[21, \ 
d[2] •= a[0]*b(ll - b[0]*a[l]) 

•endif PROTO H 
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A.3 Source file slal.c 

/ * * /  
/* File: slal.c 
/* High-level driver functions for the SLALOM93 benchmark. 
/* Version: %G% %W% 
/**/ 

•include "slal.h" 
•include "proto.h" 

/**/ 
/* Global variables: 
/**/ 
debugflag debug = none; 

extern char *optarg; 
extern int optind; 

int 
main (int argc, char *argv[)) 
( 

double ops[4], /* Operation count for each task */ 
sec[4]; /* Seconds for each major task */ 

int Inkreq, /* Requested number of links */ 
c; 

/* Parse the command line flags. */ 
while ((c = getopt(argc, argv, "d;">) != EOF) 

switch (c) ( 
case 'd': 

if ((debug «=• atoi (optarg) ) 0) 
debug = (debugflag) Oxffffffff; 
break; 

default: 
case '?': 

Usage (argv); 
break; 

} 

/* Make sure that the syntax of invocation is OK. */ 
if (argc-optind != 0) { 

Usage (argv); 
exit (1); 

) 

printf("How many links? "); 
scanf("%d", &Inkreq); 

1 

Meter(Inkreq, ops, sec); 
What (Inkreq, ops, sec); 

void 
Usage (char *argv[]) 
( 

printf ( 
printf ( 
printf ( 
printf ( 
printf ( 
exit (1) 

Usage: %s [-d debuglevel]\n", argv[0)); 
none = 0, links - 1,\n"); 
refine - 2, vectors " 4,\n"); 
iterate = 8, matrix = 16,\n"); 
hierarchy- 32, isect - 64\n"); 

void 
Meter (int Inkreq, double ops(], double sec[]) 
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double 
Node 
Node 
int 

work; 
•moan; 
*polygons[maxpoly]; 
area, 
emiss[3], 
npoly, 

P, 
rho[3], 
rowsums, 
stats [3], 
x[3]; 

/* Create root hierarchy node, and all HierVecs needed by Reader(). */ 
stats[visible] = stats[partial] = stats[blocked] - 0; 
moan •> Nodealloc (composite) ; 
heap - LhallocO; 
Lhextend(heap, Inkreq); 
x[0) 
x[l] 
x[2] 
rho[0] 
rho[1) 
rho[2] 
emiss[0] 
emiss[1] 
emiss[2] 
area 

P 
rowsums 

Halloo 0 
Halloc() 
Halloc 0 
Halloc () 
Halloc () 
Halloc 0 
Halloc () 
Halloc() 
Halloc 0 
Halloc() 
Halloc 0 
Halloc() 

/* Read in patch geometries from file "geom". */ 
sec [0] " When () ; 
Reader (moan, rho, emiss, polygons, Snpoly, Swork); 
sec[0] = When() - sec[0]; 
ops[0] - work; 

/* Set up the patch couplings and solve for RGB patch radiosities. */ 
Refsol (moan, rho, emiss, x, Inkreq, area, p, rowsums, sec, ops, stats); 

/* Write out some useful statistics. */ 
Hfill(moan, p, 1.0); 
Matvecmult(moan, rowsums, p) ; 
Hgetarea(moan, area); 
printf ("Total form factor •= %g\n", 

Hdot(moan, rowsums, area) / Hdot(moan, 
printf(" Links in hierarchy = %d\n", 
printf(" Elements in hierarchy = %d\n", 
printf(" Patches in hierarchy = %d\n", 
printf("Average links per element = %g\n", 

((float) heap->tail / Numelem(moan))); 
printf (" Totally visible links •= %d\n", 
printf(" Partly visible links = %d\n", 
printf (" Occluded links •= %d\n", 
printf("Approximate memory usage: %d bytes.\n", 

(int) (Numelem(moan) * sizeof(Node) + heap->tail * sizeof (Link))); 

p, area)); 
heap->tail); 
Numelem(moan)); 
Numleaves(moan)); 

stats[visible]); 
stats[partial]); 
stats[blocked]); 

/* Write radiosities and patch geometries to the 'answer' file. */ 
sec [3] = When () ; 
Storer(moan, x, polygons, npoly, Swork); 
sec [3] •= When () - sec [3]; 
ops[3] = work; 

/* Release dynamically allocated storage. 
Lhfree(heap); 
Hfree(x[0]); 
Hfree(x[1]); 
Hfree(x[2]); 

* /  
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Hfree(rho[0]); 
Hfree(rho [1]) ; 
Hfree(rho [2]) ; 
Hfree(emiss[0]) 
Hfree(emiss[1]) 
Hfree(emiss[2 j) 
Hfree(area); 
Hfree(p); 
Hfree(rowsums); 

) 

void 
What(int Inkreq, double ops[), double sec[]) 
{ 

int i ; 
float totaltime; 
double totalwork; 
static char *names[] = ( "Reader", "SetUp", "Solver", "Storer" ); 
static char *format = "%6.6s%8.2f%17.Of%14.6f%10.If %%\n"; 

) 

/* Print out a summary of timing information for this run. */ 
totaltime = sec[0] + sec[1] + sec[2] + sec[3]; 
totalwork = ops[0j + ops[1] + ops[2] + ops[3]; 
printf("\n%d links:\n", Inkreq); 
printf(" Task Seconds Operations MFLOPS 
for (i - 0 ; i < 4 ; i++) { 

printf(format, names[i], sec[i), ops[i], 
(ops[i] / sec[i]) * ie-6, 100.0 * sec[i] / totaltime); 

) 
printf(format, "TOTALS", totaltime, totalwork, 

(totalwork / totaltime) * le-6, 100.0); 

%% of Time\n"); 

/**/ 
/* Read in the geometry description file and produce a hierarchy of 
/* rectangles and triangles below the root node 'moan'. 
/**/ 
void 
Reader(Node *moan, int (rhohv) [3] , int (emshv)[3], 

Node **polygons, int *npoly, double *work) 
{ 

FILE 
LinkQueue 
Link 
Node 
Vector 

unsigned 

char 

*infile; 
*queue; 
Ink; 
*p, *q, *P; 
rho, ems, 
vtmp, 
vlist[maxvert); 
rO, rl, r2, 
eO, el, e2, 
nvert, 
vnum, 
vO, vl, v2, 
lineno •= 0; 
buff[257], 

v3, 

word[32]; 

(*work) = 0; 

*npoly •= 0; 
queue = Lqalloc(); 

/* Get the slot numbers of each component of reflectivity and emissivity. 
rO - rhohv[0]; 
rl = rhohv[1j; 
r2 = rhohv[2); 
eO - emshv[0]; 
el = emshv[1]; 
e2 = emshv[2]; 
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/* open the geometry file. */ 
if ((infile = fopen("geom", "r")) — NULL) ( 

fprintf(stderr, "Unable to open 'geom' file.Xn"); 
exit (1) ; 

) 

/* Read and create the polygons. */ 
while (fgets(buff, 256, infile) NULL) { 

lineno++; 

/* Parse the first word. */ 
if (sscanf(buff, "%s", word) !- 1) { 

fprintf(stderr, "Bogus line number %d.\n", lineno); 
exit (1) ; 

) 

/* Chec)c for a comment indicator. */ 
if (wordtO] -«• '#') ( 

continue; 
) 

/* Check for each type of leading word allowed. */ 
if (strcmp(word, "polyhedron") 0) 

/* Reset vertex list. */ 
nvert = 0; 

else if (strcmp(word, "polygon") — 0) ( 
/* Idiot check. */ 
if (nvert < 3) ( 

printf("Reader: Too few vertices defined. Line %d.\n", lineno); 
exit (1); 

) 
if (*npoly >•= maxpoly) ( 

printf("Reader: Too many polygons; Maximum - %d.\n", maxpoly); 
exit (1) ; 

1 

/* Parse the remainder of the line. */ 
if (sscanf (buff, "%*s%d%d%d%d %f%f%f %f%f%f", SvO, Svl, &v2, &v3, 

&rho[0], Srho[l], Srho[2], &ems[0], Sems[l], &ems[2]) !- 10) ( 
printf("Reader: Bad polygon format. Line %d.\n", lineno); 
exit (1); 

) 

/* Check the vertex indices. */ 
if (vO >- nvert | | vl >= nvert | | v2 >= nvert | | v3 >•= nvert) { 

printf("Reader: Bad vertex number. Line %d.\n", lineno); 
exit (1) ; 

} 

/* Range check the reflectivity. */ 
if (rhofO) < .001-eps || rho[l] < .001-eps || rho[2] < .001-eps || 

rhoioj > .999+eps || rhoîl) > .999+eps || rho[2] > .999+eps) ( 
printf("Reader: Reflectivity out of range. Line %d.\n", lineno); 
printf (" Must be in the range 0.001 <•= rho <= 0. 999\n") ; 
exit (1); 

} 

(*work) +» 6; 

/* Install the polygon. */ 
P = Nodealloc(patch); 
Makepoly(P, vlist[vO], vlist[vl], vlist[v2], vlist[v3]); 
(*work) += 180; /* Makepoly */ 
if (P->area •== 0.0) { 

fprintf(stderr, "Reader: Bad polygon at line %d.\n", lineno); 
exit (1); 

) 

P->e[r0] = rho[0]; 
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P->e[rl] - rho[l] 
P->e[r2) rho[2] 
P->e[eO] - ems t 0j 
P->e[eli - ems 11] 
P->e(e2] - ems[2] 
Ink.p - P; 
Lqenqueue(queue, Ink); 
polygons 1*npolyi = P; 
(*npoly)++; 
(*work) += 4 + 24; /* constructor + setnormal() */ 

) 
else if (Stromp(word, "vertex") — 0) { 

/* Parse the remainder of the line. */ 
if (sscanf(buff, "%*s%d%f%f%f", Svnum, 

&vtmp[01, Svtmp[l], Svtmp[2]) !«> 4) { 
printf("Reader: Need x,y,z vertex coords. Line %d.\n", lineno); 
exit (1) ; 

} 

/* Check the vertex number. */ 
if (vnum !» nvert) ( 

printf("Reader: Need sequential vertex numbers. Line %d.\n", 
lineno); 

exit (1); 
) 

/* Check for vertex list full. */ 
if (nvert >= maxvert) { 

printf("Reader: Vertex list full. Line %d.\n", lineno); 
exit (1); 

) 

/* Add the vertex to the vertex list. */ 
Vcopy(vlist[nvert], vtmp); 
nvert++; 

1 
else { 

printf("Reader: Line number %d is total garbage.\n", lineno); 
exit (1); 

) 
) 
printf("Reader: Read %d polygons from 'geom' file.\n", *npoly); 

/* Form the hierarchy above the polygons. */ 
while (Lqlength(queue) > 2) { 

Ink - Lqdequeue(queue); 
p = Ink.p; 
Ink = Lqdequeue(queue); 
q = Ink.p; 
Ink.p = Nodealloc(composite); 
Makecomp(lnk.p, p, q); 
Lqenqueue(queue, Ink); 

) 
Ink = Lqdequeue(queue); 
p = Ink.p; 
Ink = Lqdequeue(queue); 
q - Ink.p; 
moan->left = p; 
moan->left ->parent •» moan; 
moan->right = q; 
moan->right->parent = moan; 
Nodeinit(moan); 
Hprep (moan, emshv[0]); 
Hprep (moan, emshv(1]); 
Hprep (moan, emshv[2)); 
Hprep (moan, rhohv[0]); 
Hprep (moan, rhohv[1)); 
Hprep (moan, rhohv[2]); 
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) 

/* Debug dump of the completed hierarchy. */ 
if (debug & hierarchy) { 

printf("INITIAL HIERARCHY :\n"); 
Nodeprint(moan, 2, 0); 

) 

(•work) += (*npoly - 1) * 14; /* Composite constructors. */ 
Lqfree(queue); 

/**/ 
/* Solve for the equilibrium balance of energy transfer in the scene using 
/* the diagonally preconditioned conjugate gradient method. The matrix of 
/* form factors is implied by the links in the 'moan' hierarchy. 
/**/ 
void 
Refsol(Node *moan, int (rho)[3), int (emiss)[3], int (x)[3], int reqlinks, 

int area, int p, int rowsums, double sec[], double ops[], int stats[]) 

double timel, 
time2, 
work; 

Vector soleps; 
Visible vis; 
float Inkeps, 

err, 
t; 

int m, 
iterates, 
numlinks; 

Link Ink; 

work - 0.0; 
sec[1] - sec[2] = 0.0; 
ops[1j " ops[2] - 0.0; 
timel •= When () ; 

Lhclear(heap); /* Clear the heap, and prime it for the solution phase. 
solelemR = x[0]; 
solelemG " x[1] ; 
solelemB = x[2]; 
rhoelemR = rho[0]; 
rhoelemG = rho[1); 
rhoelemB = rho[2); 
vis = partial; 
Ink.p = moan; 
Ink.q - moan; 
Ink.cpq = Cfest(moan, moan, moan, &err, Svis, &work, stats); 
Ink.err = err; 
Ink.vis •= vis; 
Lhenqueue(heap. Ink, stats); 
Hfill(moan, x[0], 1.0); 
Hfill(moan, x[l], 1.0); 
Hfill(moan, x[2i, 1.0); 
Hprep(moan, x[0]); 
Hprep(moan, x[lj); 
Hprep(moan, x[2j); 
Inkeps = big; 
soleps[0] = big; 
soleps[11 = big; 
soleps[2] = big; 

/* Do an initial subdivision. */ 
Lhrebuild (heap); 
work +-= 22 * heap->tail; 
Inkeps = heap->p[01.epq; • 
numlinks =1; 
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Refine(moan, (numlinks, Inkeps, &work, stats); 
printf("Made %d initial links.\n", numlinks); 
Hcopy(moan, x[0], emiss[0]); 
Hcopy(moan, x[lj, emiss[1)); 
Hcopy(moan, x[2j, emiss[2]); 
Hprep(moan, x[0]); 
Hprep(moan, x[l]); 
Hprep(moan, x[2]); 
Lhrebuild(heap) ; 
work += 22 * heap->tail; 
Inkeps •» heap->p[0] .epq; 

/* Iterate until we have the right number of links. */ 
printf ("\n/ ERROR ESTIMATES --\\\n") ; 
printf(" Red | Green | Blue | Link # of Links ErrProd\n"); 

while (numlinks < reqlinks) { 

t = Fmax(soleps[0], Fmax(soleps[1), 
Fmax(soleps[2), Inkeps))) * numlinks; 

printf("%7.le | %7.1e | %7.1e | %7.1e %9d %7g ", 
soleps[0], soleps[1], soleps[2], 
Inkeps, numlinks, t); 

iterates = 0; 
for (m = 0 ; m < 3 ; m++) ( 

if (soleps[m] >= Inkeps) ( 
ops[1] += work; 
worlt " 0; 
sec [1 ] += (time2 «= When () ) - timel; 
timel = time2; 
soleps[m] = Solver(moan, rho[m], emiss[m], x[m], 

Inkeps, area, p, rowsums, Swork); 
ops[2] +" work; 
work = 0; 
sec[2] += (time2 = When()) - timel; 
timel = time2; 
Hprep(moan, x[m]); 
iterates = 1; 

) 
I 
printf("\n"); 
if (iterates) { 

Lhrebuild(heap); 
work += 22 * heap->tail; 

} 
else { 

numlinks = reqlinks; 
/* Force stopping criterion to numlinks in the last Refine call, 
t = Fmax(soleps[0], soleps[1]); 
t = Fmax(t, soleps[2]); 
Refine(moan, Snumlinks, t, &work, stats); 

} 
Inkeps •= heap->p(0] .epq; 

} 

/* Finishing iteration. */ 
t = Fmax(soleps[0], Fmax(soleps[1], 

Fmax(soleps[2], Inkeps))) * numlinks; 
printf("%7.le | %7.1e | %7.1e | %7.1e %9d %7g ", 

soleps[0), soleps[1], soleps[2], 
Inkeps, numlinks, t); 

for (m = 0 ; m < 3 ; m++) { 
ops[1] += work; 
worlc = 0; 
sec[1] += (time2 = When()) - timel; 
timel = time2; 
soleps[m] •= Solver(moan, rho[m|, emiss[m], x[m), 
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Inkeps, area, p, rowsums, Swork); 
ops[2] +- work; 
work - 0; 
sec[2] +- (time2 " When()) - timel; 
timel - time2; 

) 
printf("\n\n"); 

printf("Number of patches in hierarchy - %d\n", Numleaves(moan)); 

ops[1] +- work; 
sec[1i +- When() - timel; 

) 

/ * * /  
/* StorerO output is designed to be order-independent; use a sort 
/* utility to restore the file to an easily-readable form. 
/**/ 
void 
Storer(Node *moan, int x[), Node **polygons, int npoly, double *work) 

int i, k; 
static char ''fintl = "%4d vertex % Id %9.4f %9.4f %9.4f\n"; 
FILE *fp; /* Output file pointer. */ 

(*work) = 0; 

/**/ 
/* Write patch geometry and radiosities to 'answer' file. */ 
/ * * /  
if ( (fp " fopen ("answer", "w") ) •== NULL) { 

fprintf(stderr, "Unable to open 'answer' file.\n"); 
exit (1 ) ; 

) 

/* Write out the vertices of each polygon. */ 
fprintf(fp, "%d polygons:\n", npoly); 
for (i = 0 ; i < npoly ; i++) 

for (k " 0 ; k < 4 ; k++) 
fprintf(fp, fmtl, i + 1, k, polygons[i]->vertex[k][0], 

polygons[ij->vertex[kj[l], 
polygons[i]->vertex[k][2]); 

(*work) += 168 * npoly; 

fprintf(fp, "%d patches:\n", Numleaves(moan)); 
Writegeom(moan, fp, x[0), x[l), x[2], work); 
fclose(fp); 

/**/ 
/* Write patch interactions to 'links' file. 
/**/ 

if ((fp = fopen("links", "w")) == NULL) { 
fprintf (stderr, "Unable to open 'linlcs' file. \n") ; 
exit (1) ; 

} 

if (heap->tail > 10000) 
fprintf(fp, "0 links:\n"); 

else { 
fprintf(fp, "%d links:\n", heap->tail); 
Writelinks(fp); 

} 
fclose(fp); 

/**/ 
/* Recursive part of Storer() that traverses the patch hierarchy and 
/* writes out the geometry and radiosity information associated with 
/* each leaf patch. 
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/**/ 
void 
Writegeom(Node *p, FILE *fp, int dO, int dl, int d2, double *work) 

static char *fmt2 = "%16d %4d answer rgb %9.4f %9.4f %9.4f\n"; 
static char *fmt3 - "%16d %4d vertex %ld %9.4f %9.4f %9.4f\n"; 
int i; 
static int polynum, patnum; 

/* Set patch number to zero if this routine has just been called. */ 
if (p->parent -= NULL) 

patnum = 1; 
if (p->id > 0 &S p->parent && p->parent->id <- 0) 

polynum - p->id; 

/* Recur to the left and right if body node, else write out the patch. */ 
if (p->left) 

Writegeom(p->left, fp, dO, dl, d2, work); 
else ( 

fprintf(fp, fmtZ, patnum, polynum, p->e[dO], p->e[dl], p->e[d2]); 
for (i "= 0 ; i < 4 ; i+ + ) 

fprintf(fp, fmt3, patnum, polynum, i, 
p->vertex[i][0], p->vertex[i][1], p->vertex[i][2]); 

patnum++; 
(*work) += 210; 

} 
if (p->right) 

Writegeom(p->right, fp, dO, dl, d2, work); 
) 

/**/ 
/* Recursive part of Storer() for writing out an exhaustive list of 
/* links between patches. This routine is present for debugging 
/* purposes only. 
1**1 
void 
Writelinks(FILE *fp) 
( 

Link *P; 
int i; 
static char *fmt4 = 

"%2d %4d -=> %4d %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %d\n"; 

for (i = 0, P = heap->p ; i < heap->tail ; i++) ( 
fprintf(fp, fmt4, Getlevel(P->p) + Getlevel(P->q), 

P->p->id, P->q->id, 
P->p->center(0], P->p->center[1], P->p->center[2], 
P->q->center[0], P->q->center[1], P->q->center[2j, 
P->cpq, P->vis); 

P++; 
} 

} 

double 
When() 
( 

struct timeval tp; 
gettimeofday(Stp, NULL); 
return ((double) tp.tv_sec + (double) tp.tv_usec * le-6); 
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A.4 Source file solver.c 

/**/ 
/* File: solver.c 
/* Link refinement, coupling factor estimation, and system solver for SLALOM93. 
/* Version: %G% %W% 
1**1 

•include 
•include 

"slal.h" 
"proto.h" 

/ * * /  
/* Refine Node p against Node q. The two Nodes are adaptively subdivided 
/* such that the requested number of interactions (reqlinks) are formed. 
/* If reqlinks is passed in as -1, then subdivision is performed until all 
/* coupling factors in excess of "big" are drained from the heap. 
/ * * /  
void 
Refine(Node *moan, 
{ 

float 

Node 
Link 
Visible 

int *reqlinks, float epsilon, double *work, int stats []) 

opq, epq, 
cpql, cpq2, cpq3, 
Cplq, Cp2q, 
errl, err2, err3, 
Ap, Aq; 
*p, *q; 
Ink, Itemp; 
vis, visl, vis2, vis3; 

/* Split links until requested number of links is obtained or */ 
/* the link error drops below that of the solver, i.e. epsilon. */ 
while ((*reqlinks > 0 && heap->tail < *reqlinks) || (*reqlinks < 0)) 

/* Take the Link from the heap with the largest estimated error. 
Ink - Lhdequeue(heap, stats); 
p = Ink.p; 
q •= Ink .q; 
cpq = Ink.cpq; 
epq •= Ink.epq; 
Ap " p->area; 
Aq «• q->area; 
vis = Ink.vis; 

{ 

*/ 

/* 
/* 
if 

} 

If reqlinks is -1, and the links just removed from the heap */ 
is not of ridiculous coupling, then terminate the subdivision. */ 
( (*reqlinks < 0 &4 epq < big) | | epq < epsilon) ( 
/* Put the link back onto the heap and break. */ 
Lhenqueue(heap, Ink, stats); 
break; 

if (debug S refine) { 
printf( 

"Refining (%2d=>%2d): Fpq=%g cpq=%g epq=%g Qlen=%d vis=%d.\n", 
p->id, q->id, cpq/Ap, cpq, epq, heap->tail, vis); 

} 

/* If p and q are the same node, subdivide 3 ways instead of 2. */ 
if (p == q) { 

if (p->id <•» 0) { 
visl = vis2 "= vis3 = vis; 
cpql = Cfest(moan, p->left , 
cpq2 - Cfest(moan, p->left , 
cpq3 = Cfest(moan, p->right, 
if (debug £ refine) ( 

p->left , 
p->right, 
p->right, 

Serrl, 
Serr2, 
ierr3, 

Svisl, 
&vis2, 
Svis3, 

work, 
work, 
work. 

stats) , 
stats), 
stats), 

printf(" Estimates: (%2d to %2d) = %g\n", 
p->left->id, p->left->id, cpql); 
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printfC (%2d to %2d) - %g\n", 
p->left->id, p->right->id, cpq2); 

printfC <%2d to %2d) - %g\n", 
p->right->id, p->right->id, cpq3); 

if (cpql >0.0) I 
Itemp.p - p->left; 
Itemp.q = p->left; 
Itemp.cpq - cpql; 
Itemp.err = errl; 
Itemp.vis - visl; 
Lupdate(iltemp); 
Lhenqueue(heap, Itemp, 
(*work) +" 22; 

) 

if (cpq2 > 0.0) ( 
Itemp.p " p->left; 
Itemp.q •» p->right; 
Itemp.cpq - cpq2; 
Itemp.err •= err2; 
Itemp.vis = vis2; 
Lupdate(SItemp); 
Lhenqueue(heap, Itemp, 
(*worlc) += 22; 

) 
if (cpq3 > 0.0) { 

Itemp.p = p->right; 
Itemp.q = p->right; 
Itemp.cpq = cpq3; 
Itemp.err •= err3; 
Itemp.vis = vis3; 
Lupdate(SItemp); 
Lhenqueue(heap, Itemp, 
(*work) += 22; 

} 

) 
else 

printf("Refine: p—q and is not composite !\n"); 

/* Subdivide p if it is larger or is the only composite of the pair. */ 
else if ( 

(p->id <" 0 && q->id >0) || 
(Ap > Aq && p->id <= 0) || 
(Ap > Aq && q->id > 0)) { 

Subdiv(p); 
(*wor){) += 96; /* Subdiv */ 
visl = vis2 = vis; 
Cplq = Cfest(moan, p->left , q, Serrl, Svisl, work, stats); 
Cp2q - Cfest(moan, p->right, q, &err2, Svis2, work, stats); 
if (debug fi refine) { 

printf(" Split patch %d into patches %d and %d.\n", 
p->id, p->left->id, p->right->id); 

printf(" Cplq = %g Cp2q = %g\n", Cplq, Cp2q); 
) 
if (Cplq >0.0) ( 

Itemp.p •= p->left; 
Itemp.q •= q; 
Itemp.cpq = Cplq; 
Itemp.err = errl; 
Itemp.vis •= visl; 
Lupdate(&ltemp); 
Lhenqueue(heap, Itemp, stats); 
(*work) +"= 22; 

) 
if (Cp2q >0.0) I 

Itemp.p - p->right; 
Itemp.q = q; 

stats); 

stats); 

stats); 
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Itemp.cpq - Cp2q; 
Itemp.err = err2; 
Itemp.vis - vis2; 
Lupdate(filtemp); 
Lhenqueue(heap, Itemp, stats); 
(*work) +•= 22; 

) 

/* Subdivide q because it has the larger area. */ 
else { 

Subdiv(q); 
(*work) += 96; /* Subdiv */ 
visl = vis2 - vis; 
cpql = Cfest(moan, p, q->left , fierrl, Svisl, work, stats); 
cpq2 - Cfest(moan, p, q->right, Serr2, &vis2, work, stats); 
if (debug & refine) { 

printf(" Split patch %d into patches %d and %d.\n", 
q->id, q->left->id, q->right->id); 

printf (" Cplq*=%g Cp2q=%g\n", cpql, opq2); 
) 

if (cpql >0.0) ( 
Itemp.p •= p; 
Itemp.q = q->left; 
Itemp.cpq = cpql; 
Itemp.err •= errl; 
Itemp.vis = visl; 
Lupdate(&Itemp); 
Lhenqueue(heap, Itemp, stats); 
(*work) += 22; 

) 
if (cpq2 >0.0) { 

Itemp.p = p; 
Itemp.q = q->right; 
Itemp.cpq = cpq2; 
Itemp.err = err2; 
Itemp.vis = vis2; 
Lupdate(Sltemp); 
Lhenqueue(heap, Itemp, stats); 
(*work) += 22; 

} 
} 

) 

*reqlinks = heap->tail; 
) 

/**/ 
/* Return a coupling factor estimate from patch p to patch q (symmetric). 
/**/ 
float 
Cfest(Node *moan. Node *p. Node *q, float *err. Visible *vis, double *work, 

int stats [ )) 
( 

Vector Rij; 
float CeSt, Opart, 

cpqmin, cpqmax, 
magsq, 
el, e2; 

int i ; 

/* Check for null pointer. Return 0.0 if null. */ 
if (!p II !q) 1 

*err = 0.0; 
return 0.0; 

) 

/* If either p or q is a composite, use the product */ 
/* of their areas over total area as coupling factor. */ 
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if (p->id <= 0 I I q->id <- 0) { 
{*work) += 6; 
*err = Fmax(p->area, q->area); 
return p->area * q->area / moan->area; 

) 

/* Both p and q are polygons. Check to see if Cfest has been */ 
/* called with p —• q. If so, return 0. */ 
if (p — q) { 

*err - 0.0; 
return 0.0; 

) 

/* If the link inherited partial visibility, do an occlusion test. 
/* Return early if occluded. */ 
if (*vis partial) ( 

*vis = Occlusion(moan, p, q, work); 
if (debug & refine) { 

printf (" Occlusion(%3d->%3d) returns %s\n", p->id, q->id, 
( *vis — partial) ? "partial" : 
( (*vis "= visible) ? "visible" : "blocked")); 

) 
if (*vis == blocked) { 

stats[blocked]++; 
*err = 0.0; 
return 0.0; 

) 
) 

/* Calculate some geometry constants. */ 
Cest - 0.0; 
cpqmax = 0.0; 
cpqmin = big; 

/* Do the two center-to-center estimates. */ 
Vdiff(Rij, q->center, p->center); 
magsq - Vmagsq(Rij); 
el - Vdot(p->normal, Rij); 
e2 " - Vdot(q->normal, Rij); 
Cpart - el * e2 / (magsq * (magsq * PI)); 
cpqmin - Fmin(cpqmin, Cpart); 
cpqmax = Fmax(cpqmax, Cpart); 
if (Cpart > 0.0) 

Cest += Cpart; 
Cpart = el * e2 / (magsq * (magsq * PI)); 
cpqmin = Fmin(cpqmin, Cpart); 
cpqmax = Fmax(cpqmax, Cpart); 
if (Cpart > 0.0) 

Cest += Cpart; 

/* Do the eight off-center estimates. */ 
for (i •> 0 ; i < 4 ; i++) ( 

Vdiff (Rij, q->vertex[i], p->center); 
magsq •= Vmagsq(Rij); 
if (magsq < eps * eps) 

magsq - big; 
(*work) += 8; 

/* Finally, do the coupling estimate using disk method. */ 
el = Vdot(p->normal, Rij); 
e2 •= - Vdot (q->normal, Rij); 
Cpart •= (el * e2) / (magsq * (magsq * PI)); 
cpqmin •= Fmin (cpqmin, Cpart); 
cpqmax = Fmax(cpqmax, Cpart); 
if (Cpart > 0.0) 

Cest += Cpart; 
(*work) += 21; 
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for (i - 0 ; i < 4 ; i++) { 
Vdiff (Rij, q->center, p->vertex[i]); 
tnagsq - Vmagsq(Rij); 
if (magsq < eps * eps) 

magsq ~ big; 
(*work) +- 8; 

/* Finally, do the coupling estimate using disk method. */ 
el - Vdot(p->normal, Rij); 
e2 - - Vdot(q->normal, Rij); 
Cpart = (el * e2) / (magsq * (magsq * PI)); 
opqmin - Fmin(cpqmin, Cpart); 
cpqmax = Fmax(cpqmax, Cpart); 
if (Cpart > 0.0) 

Cest +- Cpart; 
(*work) +- 21; 

(*work) += 3; 
if (*vis == partial) 

cpqmin " Fmin(cpqmin, 0.0); 
*err = cpqmax - cpqmin; 
return Cest * (float) 0.1; 

float 
Solver(Node *moan, int rho, int emiss, int x, float epsilon, 

int area, int p, int rowsums, double *work) 
( 

int i, 
nleaf, nlink; 

float resid; 
int rhoinv, t; 

rhoirv •= Halloc () ; 
t «= Halloc () ; 
Hgetarea(moan, area); 
Hfill(moan, p, 1.0); 
Matvecmult(moan, rowsums, p); 
Hinvert(moan, rowsums, rowsums); 
Hinvert(moan, rhoinv, rho); 
nleaf = Numleaves(moan); 
nlink = heap->tail; 
(*work) += (10 * nlink + 14 * nleaf) + 6 * nleaf; 

/**/ 
/* Use Jacobi iteration to solve the system. 
/ * * /  
i •= 0; 
do ( 

/**/ 
/* The following C++ expresses the Jacobi iteration. 
/* X = (moan * x) * rowsums * rho + emiss; 
/* resid •= (rhoinv*area*(x-emiss) - area*rowsums*(moan*x)).infnorm(); 
/**/ 

/* Next iterate */ 
Matvecmult(moan, x, x); 
/**/ 
/* Hmult(moan, x, x, rowsums); 
/* Hmult(moan, x, x, rho); 
/* Hadd (moan, x, x, emiss); 
/**/ 
Hmma (moan, x, rowsums, rho, emiss); 

/* Residual calculation */ 
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Matvecmult(moan, p, x); 
/**/ 
/* Hmult(moan, t ,  rowsums, p); 
/* Hsub (moan, p, x, emiss); 
/* Hmult(moan, p, p, rhoinv); 
/* Hsub (moan, t, p, t); 
/* Hmult(moan, t, t, area); 
/* resid - Hinfnorm(moan, t); 
/**/ 
Hmsmsmn (moan, Sresid, rowsums, p, x, emiss, rhoinv, area); 

putchar(planechar); 
fflush(stdout); 
i++; 

} while (resid > epsilon); 
(*wor){) +•= i * (2 * (12 * nlink + 14 * nleaf )/* Matrix-vector multiplies 

+ 9 * (nleaf)); /* Vector operations */ 

Hfree(rhoinv); 
Hfree (t); 
return resid; 
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A.5 Source file patch.c 

/*****/ 

/* File: patch.c 
/* 
/* SLALOM 93 
/* Functions which operate on Node type. 
/* 
/* The data structure constructed by this program is a 
/* binary tree which consists of three distinct strata. Composite nodes form 
/* the top of the patch subdivision hierarchy. These nodes are groupings of 
/* polygons which are specified by the user. Next is the single level of 
/* Polygons representing the scene geometry specified by the user. Finally, 
/* the third and bottom-most stratum is comprised of Polygons representing 
/* the subdivided user-specified polygons. 
/* 
/* Each Node in the patch hierarchy may have some number of "links" or 
/* "interactions" with other patches in the hierarchy. Each link represents 
/* the (constant) content of a single block in the coupling matrix. Thus, the 
/* hierarchy forms an induced coupling matrix. Vectors with the same 
/* hierarchical structure are allocated in the patch tree. These vectors are 
/* called HierVecs. 
/* 
/* Version: %G% %W% 
/*****/ 

•include <stdio.h> 
#include <math.h> 
•include "slal.h" 
•include "proto.h" 

/**/ 
/* Static declarations and functions. 
/**/ 
static int vecalloc - 0; 
int solelemR = 0; 
int solelemG = 0; 
int solelemB = 0; 
int rhoelemR = 0; 
int rhoelemG = 0; 
int rhoelemB =• 0; 
LinkHeap *heap = NULL; 
static void Indent(int level) 

/**•*************** ! 
/* Node Functions */ 
/****************** / 

/**/ 
/* Constructor. Initialize vectors with zero. 
/**/ 
Node * 
Nodealloc(NodeType type) 
( 

static int nextid = 0; /* Composites have ID <= 0; patches have ID >- 1 */ 
Node *nd; 

nd •= (Node *) malloc (sizeof (Node) ) ; 
nd->left " nd->right = nd->parent = (Node*) NULL; 
nd->t •= 0.0; 
if (type == composite) 

nd->id = - (nextid++); 
else 

nd->id "= nextid++; 
Vzero(nd->center); 
return nd; 
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} 

/**/ 
/* Copy other patch geometry. 
/**/ 
void 
Nodecopy(Node *dest, Node *nd) 
( 

int i, mask; 

dest->left - dest->right - dest->parent - (Node*) NULL; 
dest->t - 0.0; 
for (i " 0 ; i < maxhiervec ; i++) { 

mask - (1 « i) ; 
if (vecalloc & mask) 

dGst->e[i] - nd->e[i]; 
) 
Vzero(dest->center) ; 

) 

/**/ 
/* Destructor. Delete subtrees recursively. 
/**/ 
void 
Nodefree(Node *nd) 
{ 

if (!nd) 
return ; 

Nodefree(nd->left); 
Nodefree(nd->right); 
free(nd); 

) 

/**/ 
/* Allocate storage for a HierVec. This method allocates a slot for storing 
/* a hierarchical vector in an existing patch hierarchy. When each node in 
/* the patch hierarchy is created, an array of 'maxhiervec' floats is also 
/* allocated in which to store the elements of hierarchical vectors. This 
/* method searches for an open slot in this array. If an open slot is found, 
/* then is is mark as being in use, and the slot number is returned. If no 
/* open slot is found, an error message is printed, and -1 is returned. This 
/* method, since it relies on the static member 'vecalloc' to hold the 
/* allocation table, may be called on any node in the hierarchy. 
/**/ 
int 
Halloc(void) 
( 

int i, mask; 

/* Find an empty vector slot, and return its index. */ 
for (i = 0 ; i < maxhiervec ; i++) { 

mask = (1 « i) ; 
if (!(vecalloc & mask) ) { 

vecalloc |= mask; 
return i; 

) 
) 

/* All vectors in use. */ 
fprintf(stderr, "Halloc: All vector slots full !\n"); 
return -1; 

} 

/**/ 
/* Free up a HierVec slot. 
/**/ 
void 
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H£ree(lnt d) 
( 

int mask; 

/* Make sure the vector slot is actually in use. */ 
mask - (1 << d); 
if (!(vecalloc & mask)) ( 

fprintf(stderr, "Hfree: Vector not allocated to begin with!\n"); 
abort 0 ; 

) 

/* Mark the vector slot as free. */ 
vecalloc S- -mask; 

) 

/**/ 
/* Hierarchical matrix-vector multiply. This method multiplies the matrix 
/* induced by the nodes' link tables by a hierarchical vector, and returns 
/* the hierarchical product vector. Note that the matrix which is implied 
/* is the FORM FACTOR matrix, not the ACCEPTANCE FACTOR matrix. This 
/* method must be called on the root node of a hierarchy. The multipli-
/* cand vector slot number is passed in 'x', and the desired product vector 
/* slot number is given in 'b'. Matrix-vector multiply is accomplished in 
/* four phases, which follow this method. 
/**/ 
void 
Matvecmult(Node *nd, int b, int x) 
{ 

int i ; 
Link *P; 

/* Check that this is the root node of the hierarchy. */ 
if (nd->parent != NULL) { 

fprintf(stderr, "Matvecmult() only works on root node.\n"); 
exit (1); 

} 

/* Collapse vector leaf elements up the hierarchy. */ 
Hprep(nd, x); 

/* Add up link contributions. */ 
P = heap->p; 
for (i = 0 ; i < heap->tail ; i++) { 

P->p->t += P->cpq * P->q->e[x) / P->p->area; 
if (P->p !" P->q) 

P->q->t +•= P->cpq * P->p->e [x] / P->q->area; 
P++; 

} 

Prop(nd, b); /* Collapse link contributions up and down the hier. */ 
) 

/**/ 
/* Prepare the multiplicand vector for matrix-vector multiply by collapsing 
/* its leaf nodes up the hierarchy. Note that since the multiplicand vector 
/* is a vector of radiosities, a parent's radiosity is the area-weighted 
/* average of its children's radiosities. 
/**/ 

void 
Hprep(Node *p, int x) 
{ 

Node *sstak[128], 
**ssp = sstak; 

char pstak[128], 
*csp = pstak. 

if (!p) 
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return; 

/* Collapse vector elements upwards. 
*ssp++ " p; 
*csp++ - 0; 
while (ssp !" sstak) { 

p - *—ssp; 
c • *—csp; 
p->t = 0.0; 
if (p->left) 

if (c " 
ssp++; 
*csp++ ' 
*ssp++ ' 
*csp++ ' 

) 
else if (c ' 

ssp++; 
*csp++ ' 
*ssp++ ' 
*csp++ ' 

I  
else { 

p->e[x] 

i 

: If 
: p->left; 
: 0; 

=  1 )  1  

2; 
p->right; 
0;  

/* Left subtree not visited. */ 

/* Right subtree not visited. */ 

/* Visit this node. */ 
>area * p->left ->e[x] + 

* p->right->e[x]) / 
(p->left 
p->right->area 

(p->left ->area + p->right->area); 

) 

/**/ 
/* Complete the answer by propagating partial dot-product sums down the 
/* hierarchy from the root. 
/**/ 
void 
Prop(Node *p, int b) 
( 

Node *sstak[128], 
**ssp •= sstak; 

char pstak[128], 
*csp = pstak, 
c; 

float temp; 

if (!p) 
return; 

/* Collapse vector elements upwards. */ 
*ssp++ - p; 
*csp++ = 0; 
while (ssp !=• sstak) { 

p = *—ssp; 
c = *—csp; 
if (c == 0) ( 

p->e[b) = p->t; 
if (p->parent) 

p->e[b] += p->parent->e[b] ; 

if (p->left) { 
if (c == 0) 

ssp++; 
*csp++ ' 
*ssp++ ' 
*csp++ • 

} 

else if (c • 
ssp++; 

= 1; 
= p->left; 
= 0; 

= =  1 )  {  

/* Left subtree not visited. */ 

/* Right subtree not visited. */ 
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*csp++ 
*ssp++ 
*csp++ 

2;  
p->right; 
0; 

) 

void 
Propup(Node *p, int b) 
( 

Node *sstak(128], 
**ssp " sstak; 

char pstak[128], 
*csp - pstak, 
o; 

if (!p) 
return; 

/* Collapse vector elements upwards. */ 
*ssp++ = p; 
*csp++ = 0; 
while (ssp != sstak) { 

p = *—ssp; 
c *• * — csp; 
if (c "== 0) 

p->e[b] = p->t; 
if (p->ieft) { 

if (c •=•= 0) { 
ssp++; 
*csp++ - 1; 
*ssp++ = p->left; 
*csp++ •» 0; 

) 
else if (c — 1) { 

ssp++; 
*csp++ "2; 
*ssp++ = p->right; 
*csp++ = 0; 

} 

else { 

/* Left subtree not visited. */ 

/* Right subtree not visited. */ 

} 

/* Visit this node. */ 
p->e[b] " p->left->e[b] + p->right->e[b]; 

/* All the following vector operations take slot numbers as their arguments. 
/***•*/ 

/**/ 
/* Hierarchical dest ~ a + b. 
/**/ 
void 
Hadd(Node *nd, int dest, int a, int b) 
( 

if (!nd) 
return; 

if (!nd->left) 
nd->e[dest] = nd->e[a] + nd->e[b]; 

Hadd(nd->left , dest, a, b); 
Hadd(nd->right, dest, a, b); 

) 

/**/ 
/* Hierarchical dest a - b. 
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/**/ 
void 
Hsub(Node *nd, int dest, int a, int b) 
{ 

if (!nd) 
return; 

if (!nd->left) 
nd->e[dest] - nd->e[a] - nd->e[b]; 

Hsub(nd->left , dest, a, b); 
Hsub(nd->right, dest, a, b) ; 

) 

/**/ 
/* Hierarchical dest - -a. 
/ * * /  
void 
Hneg(Node *nd, int dest, int a) 
( 

if (!nd) 
return; 

if (!nd->left) 
nd->e[dest] = - (nd->e[a]); 

Hneg(nd->left , dest, a); 
Hneg(nd->right, dest, a); 

) 

/**/ 
/* Hierarchical dest = a * b. 
/**/ 
void 
Hmult(Node *nd, int dest, int a, int b) 
( 

if (!nd) 
return; 

if (lnd~>left) 
nd->e[dest) - nd->e[a] * nd->e[b]; 

Hmult(nd->left , dest, a, b) ; 
Hmult(nd->right, dest, a, b) ; 

} 

/**/ 
/* Hierarchical dest «• a * s. 
/**/ 
void 
Hscale(Node *nd, int dest, int a, float s) 
{ 

if (!nd) 
return; 

if (!nd->left) 
nd->e[dest] = nd->e[a] * s; 

Hscale(nd->left , dest, a, s); 
Hscale(nd->right, dest, a, s); 

) 

/**/ 
/* Hierarchical dot product of a and b. 
/ * * /  
float 
Hdot(Node *nd, int a, int b) 
( 

/* If called with NULL pointer, just return 0. */ 
if (!nd) 

return 0.0; 
return (nd->left) 

? (Hdot(nd->left, a, b) + Hdot(nd->right, a, b)) 
: (nd->e[a] * nd->e[b)); 

) 
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/**/ 
I* Hierarchical dest - 1.0 / a. 
/**/ 
void 
Hinvert(Node *nd, int dest, int a) 
{ 

if (!nd) 
return; 

if (!nd->left && nd->e[a] !- 0.0) 
nd->e[dest) =1.0/ nd->e[a); 

Hinvert(nd->left , dest, a); 
Hinvert(nd->right, dest, a); 

) 

/**/ 
/* Vector d = vector s. 
/**/ 
void 
Hcopy(Node *nd, int d, int s) 
( 

if (!nd) 
return; 

if (!nd->left) 
nd->e[d] - nd->e[s]; 

Hcopy(nd->left , d, s); 
Hcopy(nd->right, d, s); 

) 

/**/ 
/* Vector d « constant. 
/**/ 
void 
Hfill(Node *nd, int d, float s) 
{ 

if (!nd) 
return; 

if (!nd->left) 
nd->e[d] - s; 

Hfill(nd->left , d, s) ; 
Hfill(nd->right, d, s); 

) 

/ * * /  
/* Vector one norm. 
/ * * /  
float 
Hnorm(Node *nd, int d) 
{ 

if (!nd) 
return 0.0; 

return (nd->left ? 0.0 : fabs((double) nd->e[d])) + 
Hnorm(nd->left , d) + 
Hnorm(nd->right, d); 

} 

/**/ 
/* Vector infinity norm. 
/**/ 
float 
Hinfnorm(Node *nd, int d) 
{ 

float mleft, mright; 

if (!nd) 
return 0.0; 

if (nd->left) { 
mleft = Hinfnorm(nd->left, d); 
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mright = Hlnfnorm(nd->right, d) ; 
return Fmax(mleft, mright); 

else 
return fabs((double) nd->e[d]); 

1 

void 
Hmma (Node *p, int x, int rowsums, int rho, int emiss) 
( 

Node *sstak[128], 
**ssp " ssta)c; 

if dp) 
return; 

/* Collapse vector elements upwards. */ 
*ssp++ - p; 
while (ssp != sstak) { 

p - * — ssp; 
if (!p->left) 

p->e[x] " p->e[x) * p->e[rowsums] * p->e[rho] + p->e[emiss]; 
if (p->left) { 

*ssp++ " p->left; 
*ssp++ - p->right; 

I  
) 

) 

void 
Hmsmsmn (Node *p, float *resid, int rowsums, int tmp, int x, 

int emiss, int rhoinv, int area) 

Node *sstak[128], 
**ssp •= sstak; 

float t; 

if (!p) 
return; 

/* Collapse vector elements upwards. */ 
*resid - 0.0; 
*ssp++ - p; 
while (ssp !" sstak) { 

p = *—ssp; 
if (!p->left) ( 

t » p->e[area] * (p->e[rhoinv] * 
(p->e[x] - p->e[emiss]) - p->e[rowsums] * p->e[tmp]); 

*resid = Fmax(*resid, fabs((double) t)); 
} 
if (p->left) { 

*ssp++ = p->left; 
*ssp++ •= p->right; 

) 
) 

) 

/**/ 
/* Get Area vector. Set each element of the hierarchical vector to the 
/* geometrical area of the node it is associated with. 
1**1 
void 
Hgetarea (Node *nd, int d) 
( 

if (!nd) 
return; 

if (!nd->left) 
nd->e[d] = nd->area; 
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if (nd->left) ( 
Hgetarea(nd->left , d); 
Hgetarea(nd->right, d); 

} 
) 

/**/ 
/* Pretty-print a vector. 
/ * * /  
void 
Hprint(Node *nd, int d) 

/* Check for null pointer. */ 
if (!nd) 

return; 

/* Recur if body node, print if leaf node. */ 
if (nd->left) { 

Hprint(nd->left , d); 
Hprint(nd->right, d) ; 

) 
else 

printf("%7g nd->e[d]); 

/* Newline if done with root node. */ 
if ( !nd->parent) 

printf("\n"); 
} 

/**/ 
/* Pretty print the current patch hierarchically. If the verbose flag 
/* is greater than zero, the patch geometry is printed in addition to 
/* the patch number. If the verbose flag is greater than one, then the 
/* patch center is also printed. 
/**/ 
void 
Nodeprint(Node *nd, int verbosity, int level) 
{ 

int i, mask; 

if (!nd) 
return; 

Indent(level); 
printf ("Node #%d:\n", nd->id); 

if (verbosity > 0) { 
if (nd->id <- 0) ( 

Indent(level); 
printf (" Bbox - [%g - %g] [%g - %g][%g - %g]\n", 

nd->vertex[0][0], nd->vertex[l][0], 
nd->vertex[0][1], nd->vertex[1][1], 
nd->vertex[0][2j, nd->vertex[1][2]); 

I  
Indent(level); 
printf (" Center = "); 
Vprint(nd->center); 
printf("\n"); 
Indent(level); 
printf (" Normal - "); 
Vprint(nd->normal); 
printf("\n"); 
Indent(level); 
printf (" Area - %g\n", nd->area); 

) 
if (verbosity > 1) { 

Indent(level); 
printf (" Vector elements: "); 
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f o r  ( 1 = 0 ;  i  <  m a x h i e r v e c  ;  i + + )  (  
mask - (1 « i) ; 
if (vecalloc & mask) 

printf("%d;%f i, nd->e[i]); 
) 
printf("\n"); 

I  

if (nd->left) 
Nodeprint(nd->left , verbosity, level + 1); 

if (nd->right) 
Nodeprint(nd->right, verbosity, level + 1); 

) 

/ * * /  
/* Convenience routine to indent some number of spaces. 
/**/ 
static void 
Indent(int level) 
{ 

while (level—) 
printf(" "); 

} 

/************•*********/ 

/* Polygon Functions */ 
/***************•*•****/ 

/**/ 
/* Constructor from four vertices. 
1**1 
void 
Makepoly(Node *nd. Vector vO, Vector vl. Vector v2, Vector v3) 
( 

int iO, il; 
float tmp; 
Vector vtmpl, vtmp2, edge[4]; 

/* Install vertices, construct the center, and set the normal vector. 
Vcopy (nd->vertex[0] , vO) ; 
Vcopy (nd->vertexil] , vl) ; 
Vcopy (nd->vertex[2] , v2) ; 
Vcopy (nd->vertex[3), v3) ; 
Vdiff (edge[0], vl. vO) ; 
Vdiff (edgeilj, v2. vl); 
Vdiff (edge [2] , v3. v2); 
Vdiff (edge[3], vO, v3) ; 
Vdiff (vtmpl, v2, vO) ; 
Vdiff (vtmp2, v3. vl) ; 
Vcross (nd->normal. vtmpl. vtmp2); 
Vscale (nd->normal. nd->normal. 0.5) ; 
Vsum (nd->center. vO, vl) ; 
Vsum (nd->center, nd->center, v2) ; 
Vsum (nd->oenter. nd->center. v3); 
Vscale (nd->center. nd->center, 0.25); 
nd->area = Vmag(nd->normal); 

/* Now make sure that the polygon is convex and planar. */ 
for (iO - 0 ; iO < 4 ; iO++) { 

il •= (iO + 1) & 3; 
Vcross(vtmpl, edge[iO], edge[il]); 
tmp = fabs(Vdot(vtmpl, nd->normal) - (nd->area * Vmag(vtmpl))); 
if (tmp > eps * nd->area * Vmag(vtmpl)) { 

Vzero (nd->vertex[0]); 
Vzero(nd->vertex[1j); 
Vzero (nd->vertex[2]); 
Vzero(nd->vertex[3]); 
Vzero(nd->center); 
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Vzero(nd->normal); 
nd->area - 0.0; 
return; 

/**/ 
/* Initialize this 
/* normal vectors, 
1**1 
void 
Nodeinit(Node *nd) 

Vector 
Vector 

Node 
float 
int 

vtmpl, 
Ibmin, 
rbmin, 
*p, *q, 
tmp; 
if j; 

node and its subtree. Initialization consists of setting 
and in the case of composite nodes, the center as well. 

vtmp2; 
Ibmax, 
rbmax; 

/* 
if 

) 

Set center and normal vectors 
(nd->id > 0) ( 

(nd->center, 
(nd->center, 
(nd->center, 
(nd->center, 
(vtmpl, 
(vtmp2. 

for a polygon. */ 

Vsum 
Vsum 
Vsum 
Vscale 
Vdiff 
Vdiff 
Vcross 
Vscale 

nd->vertex[0], 
nd->center, 
nd->center, 
nd->center, 
nd->vertex[2], 
nd->vertex[3], 

(nd->normal, vtmpl, 
(nd->normal, nd->normal, 

nd->area = Vmag(nd->normal); 

nd->vertex[1)) 
nd->vertex[2 j) , 
nd->vertex[3]) , 
0.25); 
nd->vertex [0]), 
nd->vertex [1j); 
vtmp2); 

0.5) ; 

/* Recur for all daughters. */ 
if (nd->left) 

Nodeinit(nd->left); 
if (nd->right) 

Nodeinit(nd->right); 

/* Set area, center, normal, bbox for composites. */ 
if (nd->id <•= 0) { 

/* Set area. */ 
nd->area •> nd->left->area + nd->right->area; 

/* Set center. */ 
Vscale(vtmpl, nd->left ->center, 
Vscale(vtmp2, nd->right->center, 
Vsum (nd->center, vtmpl, vtmp2); 
Vscale(nd->center, nd->center, 

1.0 / (nd->left ->area + nd->right->area)); 

nd->left ->area); 
nd->right->area); 

/* Set normal. */ 
Vsum (nd->normal, nd->left->normal, nd->right->normal); 
tmp = Vmag(nd->normal); 
if (tmp !- 0.0) 

Vscale (nd->normal, nd->normal, nd->area / tmp); 

/* Set bounding box. */ 
/* Extract the bounding boxes for the left and right daughters, 
p = nd->left; 

* /  

q ' 
if 

• nd->right; 
(nd->l6ft->id 
Vcopy(Ibmin, 
Vcopy(Ibmax, 

<= 0) { 
p->vertex[0]); 
p->vertex[lj) ; 

else { 
/* Get the bounding box around p and q. */ 
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for (j - 0 ; j < 3 ; j++) { 
lbmin[j) - p->vertex[0][j]; 
Ibmaxij] - p->vertex[0][j]; 
for (i - 1 ; i < 4 ; i++) { 

lbmin[j] » Fmin(Ibmin[j], p->vertex[i][j]); 
Ibmaxij] - Fmax(Ibmaxij], p->vertexii)ij]); 

) 
} 

if (nd->right->id <= 0) { 
Vcopy(rbmin, q->vertex[0)); 
Vcopy(rbmax, q->vertexi1]); 

) 
else { 

/* Get the bounding box around p and q. */ 
for (j - 0 ; j < 3 ; j++) { 

rbmin[j] » q->vertex[0][j]; 
rbmaxi j] " q->vertexi0] ij]; 
for (i •" 1 ; i < 4 ; i++) { 

rbmin[j] = Fmin(rbmin[j], q->vertex[i][j]); 
rbmax i j j - Fmax(rbmaxij], q->vertexii]ij]); 

) 
) 

. ) 

/* Merge the left and right bounding boxes. */ 
for (j = 0 ; j < 3 ; j++) { 

nd->vertex[0] [ j] •= Fmin (Ibmin [j], rbmin [ j ] ) ; 
nd->vertexil] [j] - Fmax(Ibmax[j], rbmax[j j); 

) 
) 

/**/ 
/* Return number of ACTIVE leaves in hierarchy. 
/**/ 
int 
Numleaves(Node *nd) 
( 

return nd->left ? Numleaves(nd->left) + Numleaves(nd->right) : 1; 

/**/ 
/* Use a bounding box check to see if anything is between p and q. 
/**/ 
Visible 
Occlusion (Node *0, Node *P, Node *Q, double *work) 
( 

Vector r, s, t, u, 
vtmpl, 
P(4), q[4], o[4] ; 

Visible visl, vis2; 
float tmp, /* Scratch scalar 

pqbox[6] ; /* Bbox about polygons p and q 
int i ,  j ,  k ,  V ,  /* Loop counters 

kl, k2, k3, k4, /* Hit-miss counters 
iP/ iq, /* Hull plane counters 
ipO, iqO, 
incflag; 

static Vector hullnm[8] , 
hullpt i8]; 

static int ih, 
hullp[8], /* Hull edge vertex index. */ 
hullqi8); /* Hull edge vertex index. */ 

static Node *lastP - NOLL, 
*lastQ •= NULL; 
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/* Copy p, q, and o vertices into convenience variables. */ 
for (i "• 0 ; i < 4 ; i++) { 

Vcopy(o[i), 0->vertex[i]); 
Vcopy(p[i], P->vertex[ij); 
VcopyCqiij, Q->vertGx[i]); 

) 

/ * * /  
/* PQ VISIBILITY AND SUPPORT PLANE SPLITTING TEST */ 
/* Find the number of vertices of p in q's half plane, and vice */ 
/* versa. */ 
/* If p behind q or q behind p, then they do not see each other. */ 
/* If p straddles q or q straddles p, they may be partly visible. */ 
/**/ 
kl " k2 " k3 - k4 >= 0; 
for (i » 0 ; i < 4 ; i++) { 

Vdiff(r, q[i], p[i]); 
tmp •= Vdot(r, P->normal) ; 
if (tmp > eps) 

kl++; 
if (tmp < -eps) 

k2++; 
tmp " Vdot(r, Q->normal); 
if (tmp < -eps) 

k3++; 
if (tmp > eps) 

k4++; 
} 
(*work) +•» 68; 
/* At least one polygon can't see the other. */ 
if (kl ==0 II k3 0) 

return blocked; 
/* One polygon splits the other's support plane. */ 
if (k2 > 0 II k4 > 0) 

return partial; 

/**/ 
/* Test for a COMPOSITE between two polygons. */ 
/**/ 

if (0->id <- 0) { 
/* Get the bounding box around p and q. */ 
for (i = j = 0 ; i < 6 ; i += 2, j++) ( 

pqbox[i+0] = Fmin(P->vertex[0)tj]f Q->vertex[0][j]); 
pqbox[i+l] - Fmax(P->vertex[0]ijj, Q->vertex[0j[jj); 
for (v - 1 ; V  < 4 ; v++) ( 

pqbox[i+0] - Fmin(pqbox[i+O], 
Fmin(P->vertex[v][j], Q->vertex[v][j])); 

pqbox[i+l] " Fmax(pqbox[i+l], 
Fmax(P->vertex[v][j], Q->vertex[v)[j))); 

} 

) 

/* Test if this polygon's bbox lies completely to one side of */ 
/* pq's bbox. If so, then there is surely no occlusion. */ 
if ((0->vertex[0][0] < pqbox[0] && 0->vertex[l][0] < pqbox[0] || 

0->vertex[0][0] > pqbox[1] && 0->vertex[l][0] > pqbox[1)) || 
(0->vertex[0][1j < pqbox[2] && 0->vertex[1j[1] < pqbox[2] || 
0->vertexi0][1] > pqbox[3] £& 0->vertex[1j[1j > pqbox[3]) || 

(O->vertex[0) [2] < pqbox[4] && 0->vertex[l][2] < pqbox[4j | j 
0->vertexi0][2] > pqbox[5] && 0->vertex[1][2j > pqbox[5])) { 

if (debug S isect) 
printf("Occlusion: Polygon outside bounding box.\n", 0->id); 

return visible; 
} 

visl - Occlusion(0->left, P, Q, work); 
if (debug & isect) { 
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printf("Occlusion(%d): Left returned %s\n", 0->id, 
( visl "" partial) ? "partial" : 
{(visl visible) ? "visible" : "blocked")); 

I 
if (visl blocked) 

return visl; 
vis2 - Occlusion(0->right, P, Q, work); 
if (debug 6 isect) ( 

printf("Occlusion(%d): Right returned %s\n", 0->id, 
( vis2 — partial) ? "partial" : 
((vis2 " visible) ? "visible" : "blocked")); 

) 
if (vis2 — blocked) 

return vis2; 
if (visl — partial || vis2 — partial) 

return partial; 
return visible; 

1 
/**/ 
/* Test for a POLYGON between two polygons. */ 
/ * * /  
else I 

/**/ 
/* ENDCAP TEST */ 
/* Check if o lies at least partly in p and q half planes. Return 2 */ 
/* if all vertices of o are behind p or behind q, or if p and q are */ 
/* on the same side of o. */ 
/**/ 

kl = k2 •" 0; 
for (i - 0 ; i < 4 ; i++) { 

Vdiff(vtmpl, o[i], p[i]); 
tmp - Vdot(vtmpl, P->normal); 
if (tmp > eps) /* o vertex is strictly in front of p. */ 

kl++; 
Vdiff(vtmpl, o(i), q[i]); 
tmp = Vdot(vtmpl, Q->normal); 
if (trap > eps) /* o vertex is strictly in front of q. */ 

k2++; 
) 
(*work) += 72; 
if (kl =- 0 II k2 •»" 0) /* No vertices are strictly in front */ 

return visible; /* of the p and q planes. */ 

kl - k2 = k3 = k4 = 0; 
for (i - 0 ; i < 4 ; i++) { 

Vdiff(vtmpl, p[i), o[i]); 
tmp = Vdot (vtmpl, 0->norraal); 
if (tmp > -eps) /* p vertex is on or in front of o. */ 

kl++; 
if (tmp < eps) /* p vertex is on or behind o, */ 

k2++; 
Vdiff(vtmpl, q[i), o[i]); 
tmp = Vdot(vtmpl, 0->normal); 
if (tmp > -eps) /* q vertex is on or in front of o. */ 

k3++; 
if (tmp < eps) /* q vertex is on or behind o. */ 

k4++; 
} 
(*work) += 80; 
if ( (kl "== 4 && k3 ==4) II (k2 «== 4 && k4 == 4) ) 

return visible; 

/ * * /  
/* WAIST PLANE CONSTRUCTION */ 
/* Finally, check whether o lies in the half planes that define the */ 
/* "waist" of the convex hull of p and q. Form the 8 planes defined */ 
/* by an edge of p with the "rearmost" vertex of q and vice versa, */ 
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/* storing them as point-normal pairs. Test planes against all 4 */ 
/* points of o. If o lies strictly behind any half plane, return 2. */ 
/* If o lies strictly within at least one (open) half plane, */ 
/* return 1. */ 
/* If o contains every intersection of hull with o plane, return 0.*/ 
/**/ 
if (P !" lastP II Q !- lastQ) ( 

lastP 
lastQ 

P ;  
Q; 

ip - ipO " 0; 
Vdiff(s, p[(ip+l)S3), p[ip]); 
for (i •= 0 ; i < 4 ; i++) { 

Vdiff(r, q[i], p[ip]); 

Vcross(u, r, s); 
if (Vmagsq(u) < eps * eps) 

Vcopy(u, P->normal); 

/* Form directed edge of patch p.*/ 

/* Vector from anchor point on p */ 
/* to trial point on q. */ 

/* Now check that all other points on q */ 
/* lie in front of this plane. */ 
for (k = 0 ; k < 4 ; k++) { 

if (k =- i) 
continue; 

Vdiff(vtmpl, q[k], q[i]); 
tmp - Vdot(vtmpl, u); /* Dot with vector from ref */ 

/* point to test vertex */ 
(*work) += 9; 
/* If vertex lies behind plane, end loop. */ 
if (tmp < -eps) 

break; 
) 
(*work) +•=• 19; 

if (k 4) { 
iq •> iqO • 
break; 

) 
) 
(*work) +- 3; 

i; 

ih " 0; 
incflag 
do { 

0; 

/* Find out which vertex can be incremented. */ 
/* First, try incrementing ip. */ 
Vdiff(s, p[(ip+l)i31, p[ip]); 

Vdiff(r, q[iq], p[ip]); 

Vcross (u, r, s); 
if (Vmagsq(u) < eps * eps) 

Vcopy(u, P->normal); 
(*work) +- 22; 

/* 
/* 
/* 
/* 

Vector along edge on p from*/ 
vertex i to vtx i+1 mod 4. */ 
Vector from trial pt on q */ 
to head point of edge on p.*/ 

/* Normal to plane, r X s. */ 
/* Check if p[ip] and q[iq] */ 
/* are identical. */ 

/* Now check that all other points on q */ 
/* lie in front of this plane, 
for (k •= 0 ; k < 4 ; k++) { 

if (k =" iq) 
continue; 

Vdiff(vtmpl, q[k), q[iq]); 
tmp = Vdot(vtmpl, u); 

(*work) +" 
if (tmp < • 

break; 

9; 
•eps) 

V  

/* Dot with vector from ref 
/* point to test vertex 

*/ 
*/ 

/* If vertex lies behind plane*/ 
/* end loop. */ 
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) 

/* If all points in q lie behind the plane, accept ip+1. */ 
if (k — 4) ( 

/* Store a line segment from vertex ip to iq. */ 
hullp [ihj - ip; 
hullq [ih] - iq; 
Vcopy(hullnm[ih], u); 
Vcopy(hullpt[ihj, p[ip]); 
ip •= (ip +1) S3; 
incflag - 0; 
ih++; 
continue; 

) 

/* Next, try decrementing iq. */ 
Vdiff(s, q[(iq-l)&3], q[iq]); /* Vector along edge on q from*/ 

/* vertex i to vertex i-lmod4.*/ 
Vcross(u, r, s); /* Normal to plane, r X s. */ 
if (Vmagsq(u) < eps * eps) 

Vcopy(u, Q->normal); 
(*work) += 19; 

/* Now check that all other points on p */ 
/* lie in front of this plane. */ 
for (k = 0 ; k < 4 ; k++) ( 

if (k == ip) 
continue; 

Vdiff(vtmpl, p[k], p[ip)); 
tmp - Vdot(vtmpl, u); /* Dot with vector from ref */ 

/* point to test vertex */ 
(*work) +•= 9; 
if (tmp < -eps) /* If vertex lies behind plane*/ 

break; /* end loop. */ 
I  

/* If all points in p lie behind the plane, accept iq-1. */ 
if (k 4) ( 

/* Store a line segment from vertex ip to iq. */ 
hullp [ih] = ip; 
hullq [ihj - iq; 
Vcopy(hullnm[ih], u); 
Vcopy(hullpt[ihj, p[ip]); 
iq ~ (iq - 1) & 3; 
incflag •> 1; 
ih++; 
continue; 

1 

/* Disaster if we get to here. */ 
if (incflag -= 0) ( 

incflag - 1; 
iq " (iq - 1) 5 3; 

} 

else { 
incflag - 0; 
ip - (ip + 1) S 3; 

} 

} while ((ip !» ipO || iq !" iqO) && ih < 8); 

/**/ 
/* WAIST PLANE TESTS. 
/* Now, actually check the vertices of 
/* o against the waist planes of pq. 
/**/ 
for (i = 0, k2 =" 0 ; i < ih ; i++) ( 

for (j - 0, kl - 0 ; j < 4 ; j++) { 
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/* Bump kl if point j lies on the outside the half space. */ 
Vdiff(vtmpl, otj), hullpt[i]); 
tmp - Vdot(vtmpl, hullnm[i]>; 
if (tmp < eps) 

kl++; 
) 

+- 36; 
if (kl — 4) /* o lies completely behind hull plane, 

return visible; 
if (kl 0) /* o lies completely inside hull plane. 

k2++; 
I  
if (k2 -= ih) /* o is strictly in front of every hull plane. */ 

return partial; 

/* Test if the intersection of waist and support plane of o lies */ 
/* completely inside o. If so, then return total occlusion. */ 
for (i •= 0 ; i < ih ; i++) { 

/* Vector along the i'th "waistline". */ 
Vdiff (r, q[hullq[i)], p[hullp[i]]); 

/* Intersect the vector with o support plane. */ 
tmp - Vdot(r, 0->normal); 
(*work) +" 8; 
if (tmp !- 0.0) ( /* SHOULD THIS BE EPSILON? */ 

Vdiff(vtmpl, o[0), p[hullp[i]]); 
tmp •= Vdot (vtmpl, 0->normal) / tmp; 
Vscale(s, r, tmp); 
Vsum(s, s, p[hullp[i]]); 
(*work) +- 18; 

) 
else ( 

Vcopy(s, p[hullp(il1); 
break; /* FIX FOR ONORML PERP. TO WAISTLINE 

} 

/* Check if the IP lies inside o. */ 
for (j = 0 ; j < 4 ; j++) { 

Vdiff (r, o[(j+l)S3), o[j]); /* Construct an edge of o. */ 
Vdiff (t, s, o[j]); /* Vector from o[j] to IP */ 
Vcross(u, r, t); /* u is perpendicular to r and t 

/* Check the sign of the dot product of u with onormal. */ 
tmp - Vdot(0->normal, u) ; 
(*work) +•» 21; 
if (tmp < -eps) 

break; 

I  

/* If this point does not lie inside o, then quit looking. */ 
if (j !- 4) 

break; 
} 

/* If all points lie inside o, then return blocked. */ 
if (i == ih) 

return blocked; 

return partial; 
} 

) 

/**/ 
/* Subdivide a patch into two subpatches. Split patch by halving the 
/* longest side, and the side opposite the longest side. This function 
/* always succeeds and returns TRUE. 
/ * * /  
void 
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Subdiv(Node *nd) 
{ 

Vector edge[4], 
overtexO, 
nvertexl; 

float len[4], 
temp; 

int i, 
longest, 
opposite; 

/* Return if patch has already been subdivided. */ 
if (nd->left) 

return; 

/* Allocate the new daughter patches. */ 
nd->left - Nodealloc(patch); 
nd->right = Nodealloc(patch); 
Nodecopy(nd->left , nd); 
Nodecopy(nd->right, nd); 
nd->left ->parent = nd; 
nd->right->parent •= nd; 

/* Compute the edge vectors. */ 
Vdiff(edge[0], nd->vertex[1], nd->vertex[0)); 
Vdiff(edgeilj, nd->vertex[2j, nd->vertex[1]); 
Vdiff(edge[2], nd->vertex[3], nd->vertex[2]); 
Vdiff(edge[3], nd->vertex[0], nd->vertex[3]); 
len[0] = Vmagsq(edge[0]); 
lenil] - Vmagsq(edge[1]); 
len[2] - Vmagsq(edge[2]); 
len[3] - Vmagsq(edge[3]); 

/* Find the longest side. */ 
longest = 0; 
temp «" len [0] ; 
for (i - 1 ; i < 4 ; i++) { 

if (len[i] > temp) ( 
temp " len[i]; 
longest - i; 

) 
) 
opposite " (longest +2) & 3; 

/* Split the longest side, and the side opposite it. */ 
Vscale (nvertexO, edge[longest], 0.5); 
Vsum (nvertexO, nvertexO, nd->vertex[longest]); 
Vscale(nvertexl, edge[opposite], 0.5); 
Vsum (nvertexl, nvertexl, nd->vertex[opposite]); 
Ma)cepoly(nd->left , nd->vertex[longest ], nvertexO, nvertexl, 

nd->vertex[(longest + 3) s 3]); 
Makepoly(nd->right, nd->vertex[opposite], nvertexl, nvertexO, 

nd->vertex[(opposite + 3) & 3]); 
} 

/*******************•***/ 

/* Composite Functions */ 
/***********************/ 

/**/ 
/* Constructor from two other nodes. 
/ * * /  
void 
Makecomp(Node *nd, Node *p, Node *q) 
( 

int i, j; 
Vector Ibmin, Ibmax, 

rbmin, rbmax. 
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vtmpl, vtinp2; 

/* Link p and q to nd. */ 
nd->left - p; 
nd->right - q; 
p->parent - nd; 
q->parent - nd; 

/* Update the area and center of the composite. */ 
nd->area = p->area + q->area; 
Vscale(vtmpl, p->center, p->area); 
Vscale(vtmp2, q->center, q->area); 
Vsum (nd->center, vtmpl, vtmp2); 
Vscale(nd->oenter, nd->center, 1.0 / (p->area + q->area)); 

/* Extract the bounding boxes for the left and right daughters. */ 
if (nd->left->id <-= 0) { 

Vcopy(Ibmin, p->vertex[0]) ; 
Vcopy(Ibmax, p->vertex[1]); 

1 
else { 

/* Get the bounding box around p and q. */ 
for (j = 0 ; j < 3 ; j++) ( 

Ibmin[j] » p->vertex[0) [j) ; 
Ibmaxiii = p->vertex[0] ij1 ; 
for (i = 1 ; i < 4 ; i++) { 

Ibmin[j] = Fmin (Ibmin[j], p->vertex[i][j]); 
Ibmax[j] " Fmax(Ibmax[j], p->vertex[ijfj]); 

) 

I  
if (nd->right->id <-= 0) { 

Vcopy(rbmin, q->vertex[0]); 
Vcopy(rbmax, q->vertex[1j); 

) 
else ( 

/* Get the bounding box around p and q. */ 
for (j - 0 ; j < 3 ; j++) { 

rbmin[j] = q->vertex[0)[j]; 
rbmax [j] •= q->vertex[0] [ j] ; 
for (i = 1 ; i < 4 ; i++) { 

rbmin[j] = Fmin(rbmin[j], q->vertex[i][j]); 
rbmax[j) = Fmax(rbmaxfjj, q->vertex[i](jj); 

I  
) 

) 

/* Merge the left and right bounding boxes. */ 
for (j - 0 ; j < 3 ; j++) { 

nd->vertex[0][j] - Fmin(Ibmin[j], rbmin[j]); 
nd->vertex[lj [j] = Fmax(Ibmax[jj, rbmax[j]); 

I  
) 

/**/ 
/* Return this Node's level in hierarchy. 
/**/ 
int 
Getlevel(Node *p) 
( 

return p->parent ? Getlevel(p->parent) +1:0; 
} 

/* Return the number of nodes in */ 
/* the patch hierarchy starting */ 
/* here and going down. */ 
int 
Numelem(Node *p) 
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return p ? Kumelem(p->left) + Numelem(p->right) 
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A.6 Source file heap.c 

/**/ 
/* File: heap.c 
/* SIALOM 93 adaptive patch subdivision testbed program. 
/* Queue and Heap function definitions. 
/* Version: %G% %W% 
/**/ 

•include "slal.h" 
•include "proto.h" 

/*******•***********/ 

/* Queue Functions */ 

/**/ 
/* Constructor. Initialize to zero length and allocate no storage. 
/**/ 
LinkQueue * 
Lqalloc(void) 

I  
LinkQueue *lq; 
Iq = (LinkQueue *) malloc(sizeof(LinkQueue)); 
lq->alloclen = lq->head •= lq->tail = 0; 
lq->p = NULL; 
return Iq; 

) 

/**/ 
/* Destructor. Free up any allocated storage. 
/**/ 
void 
Lqfree(LinkQueue *lq) 

if (lq->p) 
free(lq->p); 

if (Iq) 
free(Iq); 

) 

/* Return the number of Links in Q */ 
int 
Lqlength(LinkQueue *lq) 
i 

return (lq->head - lq->tail + lq->alloclen) % lq->alloclen; 
) 

/**/ 
/* Enqueue the element Ink at the head of the queue. 
/**/ 
void 
Lqenqueue(LinkQueue *lq, Link Ink) 
( 

/* Check for overflow. */ 
if (!lq->p I I 

lq->head == ((lq->tail - 1 + lq->alloclen) % lq->alloclen)) 
Lqextend(Iq, 0); 

/* Insert the new element. */ 
lq->p[lq->head] - Ink; 

/* Bump the head index. */ 
lq->head++; 
if (lq->head >= lq->alloclen) 
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lq->head - 0; 
) 

/**/ 
/* Dequeue an element from the tail of the queue. 
/**/ 
Link 
Lqdequeue(LinkQueue *lq) 
( 

Link Ink; 

/* Check for underflow. */ 
if (lq->head == lq->tail) { 

fprintf(stderr, "LinkQueue: Queue underflow.\n") ; 
Ink.p = Ink.q = NULL; 
Ink.cpq - Ink.epq = 0.0; 
return Ink; 

I  

/* Extract the element. */ 
Ink " lq->p[lq->tail]; 

/* Bump the tail index. */ 
lq->tail++; 
if (lq->tail >= lq->alloclen) 

lq->tail " 0; 

return Ink; 
) 

/**/ 
/* Allocate another unit of "defchunksize" queue elements and copy the old 
/* elements in. This is rather inefficient, so it deserves future attention. 
/**/ 
void 
Lqextend(LinkQueue *lq, int newsize) 
( 

Link *newp; 
int i ; 

/* Check argument passed. If zero, then extend one chunksize. */ 
if (newsize -= 0 || newsize < lq->alloclen) 

newsize = lq->alloclen + defchunksize; 

/* Allocate the new space. */ 
newp " (Link *) malloc(newsize * sizeof (Link)); 

/* Copy old queue contents into new queue. */ 
if (lq->tail < lq->head) ( 

for (i = lq->tail ; i < lq->head ; i++) 
newp[i-lq->tail] = lq->p[i]; 

lq->head = lq->head - lq->tail; 
lq->tail - 0; 

) 
else if (lq->alloclen > 0) { 

for (i «= lq->tail ; i < lq->alloclen ; i++) 
newp[i-lq->tail] «= lq->p[i]; 

for (i •= 0 ; i < lq->head ; i++) 
newp[lq->alloclen-lq->tail+i] = lq->p[i]; 

lq->head - ((lq->head - lq->tail + lq->alloclen) % lq->alloclen); 
lq->tail = 0; 

} 

/* Free up the old queue storage. */ 
if (lq->p) 

free(lq->p); 

/* Update queue management information. */ 
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lq->p - newp; 
lq->alloclen - newsize; 

) 

/**/ 
/* Pretty print the contents of the queue. 
/**/ 
void 
Lqprint (LinkQueue *lq) 
{ 

int i; 

printf("Queue dump: "); 
for (i - lq->tail ; i !- lq->head ; i - (i + 1) % lq->alloclen) 

printf("[p-%d q-%d cpq-%g epq-%g]\n", 
lq->p[i).p, lq->p[i].q, lq->p[i].cpq, lq->p[i].epq); 

printf("\n"); 

/******************/ 

/* Heap Functions */ 
/******************! 

/**/ 
/* Constructor. Allocate no initial storage. 
/**/ 
LinkHeap * 
Lhalloc(void) 
{ 

LinkHeap *lh; 

Ih " (LinkHeap *) malloc(sizeof(LinkHeap)); 
lh->alloclen - lh->tail = 0; /* Point one past last element. 
lh->p - NOLL; 
return Ih; 

/**/ 
/* Destructor. 
/**/ 
void 
Lhfree(LinkHeap *lh) 
( 

if (lh->p) 
free(lh->p); 

if (Ih) 
free(Ih); 

) 

/**/ 
/* Add an element to the heap, then rebuild the heap. 
/**/ 
void 
Lhenqueue(LinkHeap *lh, Link Ink, int stats []) 
( 

int i, j; 
Link temp; 

/* Update the stats structure, add element to the end of the heap, and 
/* index to the new element and its parent. */ 
stats[Ink.vis]++; 
/* Check for overflow. */ 
if (lh->tail >= lh->alloclen) 

Lhextend(Ih, 0); 
lh->p[lh->tail) = ink; 
i " lh->tail++; 
j - (i - 1) » 1; 
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/* While not at the root... */ 
while (i) ( 

/* If the daughter is greater than the parent, swap them. */ 
if (lh->p[i].epq > lh->p[j).epq) ( 

temp - lh->p[j]; 
lh->p[j] - lh->p[i]; 
lh->p[ij - temp; 

} 
else 

break; 

/* If there was a swap, move a level up the heap, and repeat. */ 
i - (i - 1) » 1; 
j - (j - 1) » 1; 

) 
} 

/**/ 
/* Remove the root of the heap, and reheapify. 
1**1 
Link 
Lhdequeue(LinkHeap *lh, int stats[]) 
{ 

Link Ink; 

/* Check for underflow. */ 
if (lh->tail <" 0) { 

fprintf(stderr, "Lhdequeue(): Heap underflow.\n") ; 
Ink.p " Ink.q = NULL; 
Ink.epq - Ink.epq = 0.0; 
return Ink; 

) 

/* Remove the root element, and replace it with the tail element. */ 
Ink - lh->p[0); 
if (—lh->tail > 0) 

lh->p[0] = lh->p[lh->tail]; 

/* Heapify from the root down since we replaced the root element. */ 
Lhheapify(Ih, 0); 

/* Update the stats structure. */ 
stats[Ink.vis]—; 
return Ink; 

) 

/**/ 
/* Update the epq member of each element and reheapify. 
/ * * /  
void 
Lhrebuild(LinkHeap *lh) 
( 

int i ; 

for (i = 0 ; i < lh->tail ; i++) /* Update the epq field. */ 
Lupdate(&lh->p[i]); 

for (i = (lh->tail » 1) - 1 ; i >= 0 ; i—) /* Build a new heap. */ 
Lhheapify(Ih, i); 

) 

void 
Lupdate(Link *lnk) 
( 

float s, t; 

if (lnk->p && lnk->q) ( 
/ * * /  
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/* Compute the 1-norm of the maximum amount of light 
/* emitted from patch p and reflected from patch q, or vice versa. 
/**/ 
s - lnk->p->e[rhoelemR] * lnk->q->e[solelemR] 

+ lnk->p->e[rhoelemG] * lnk->q->e[solelemG] 
+ lnk->p->e[rhoelemB] * lnk->q->e[solelemB]; 

t - lnk->q->e[rhoelemR] * lnk->p->e[solelemR] 
+ lnk->q->e[rhoelemG] * lnk->p->e[solelemG] 
+ lnk->q->e [rhoeleirB] * lnk->p->e [solelemB] ; 

lnk->epq - Fmax(s, t) * lnk->err * 0.001; 
} 
else 

lnk->epq - 0.0; 
) 

/ * * /  
/* Update the epq member of each element and reheapify. 
/**/ 
void 
Lhheapify(LinkHeap *lh, int root) 
{ 

int i, j, k; 
Link temp; 

i = root; 
j - (i « 1) + 1; 
k - j + 1; 

while (j < lh->tail) ( 
if (lh->p[j].epq > lh->p[i].epq && 

(k < lh->tail && lh->p[j].epq > lh->p[k].epq || k >- lh->tail)) { 
temp = lh->p[i]; 
lh->p[i] " lh->p[j]; 
lh->p[jj - temp; 
i - i; 

} 

else if (lh->p[k].epq > lh->p[i].epq S& k < lh->tail) { 
temp = lh->p[i]; 
lh->p[i] - lh->p[k]; 
lh->p[k] = temp; 
i = k; 

) 

else 
break; 

j = (i « 1) + 1; 
k = j + 1; 

) 
) 

/ * * /  
/* Clear all elements from the heap. 
/ * * /  
void 
Lhclear(LinkHeap *lh) 
{ 

lh->tail = 0; 
) 

/**/ 
/* Allocate more space for the heap. 
/ * * /  
void 
Lhextend(LinkHeap *lh, int newsize) 
( 

Link *newp; 
int i; 

/* Check argument passed. If zero, then extend one chunksize. */ 

I 
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if (newslze «— 0 || newsize < lh->alloclen) ( 
newsize - lh->alloolen + defchunksize; 

) 

/* Allocate a bigger storage area. */ 
newp " (Link *) malloc(newsize * sizeof(Link)); 

/* Copy the old elements to the new area. */ 
for (i - 0 ; i < lh->alloclen ; i++) 

newp[i] - lh->p[i]; 

/* Delete the old storage area. */ 
if (lh->p) 

free(lh->p); 

/* Update heap management members. */ 
lh->p - newp; 
lh->alloclen = newsize; 

) 

/ * * /  
/* Pretty print the contents of the heap. 
/**/ 
void 
Lhprint(LinkHeap *lh) 
{ 

int i; 

printf("Heap dump:\n"); 
for (i = 0 ; i < lh->tail ; i++) { 

printf("[p=%4d q=%4d cpq=%10.4f epq=%10.4f]\n", 
lh->p[il.p->id, lh->p[il.q->id, lh->p[i].cpq, lh->p[i].epq); 

printf("\n"); 
) 
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A.7 Source file matvec.c 

/**/ 
/* File: matvec.c 
/* 4x4 and 4x1 Matrix and vector manipulation and transformation code. 
/**/ 

/**/ 
/* Vector Functions */ 
/**/ 

/* Zero a vector. */ 
void 
Vzero (Vector v) 
{ 

v[0] " v[l] - v[2] = 0.0; 
) 

/* Copy a vector. */ 
•ifndef Vcopy 
void 
Vcopy(Vector dest, Vector a) 

i 
dest[0] = a [0]; 
dest[1] = a [11 ; 
dest [2] = a [2]; 

) 
iendif 

/* Pretty-print the vector. */ 
void 
Vprint(Vector v) 
{ 

printf("[%g %g %g] v[0], v[l], v[2]); 
) 

/* Return the magnitude of a vector. */ 
float 
Vmag(Vector v) 
( 

return sqrt((double) Vdot(v, v)); 
) 

/* Return the magnitude squared of a vector. */ 
•ifndef Vmagsq 
float 
Vmagsq(Vector v) 
{ 

return Vdot(v, v); 
) 

iendif 

/* Add two vectors. */ 
•ifndef Vsum 
void 
Vsum(Vector dest, Vector a, Vector b) 
( 

dest[0) = a[0] + b[0); 
dest[1] = a[1] + bil] ; 
dest[2] - a[2] + b[2); 

•include 
•include 
•include 
•include 

<stdio.h> 
<math.h> 
"slal.h" 
"proto.h" 
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fendif 

/* Subtract two vectors. */ 
•ifndef Vdiff 
void 
Vdiff(Vector dest, Vector a, Vector b) 
( 

dest [0] "= a[0) - b[0]; 
dest[1] -ail] - b[l); 
dest[2] - a[2] - b[2j; 

) 
fendif 

/* Scale vector by a scalar. */ 
void 
Vscale(Vector dest, Vector a, float s) 
( 

dest[0] - a[0] * s; 
dest[1] -ail] * s; 
dest i2] = aiZ] * s; 

) 

/* Vector cross product */ 
•ifndef Vcross 
void 
Vcross(Vector dest, Vector a, Vector b) 
( 

Vector vtemp; 

vtempIO] - (a[l] * b[2]) - (b[l] * a[2]); 
vtemp[1] - -((a[0] * b[2]) - (b[0] * a[2])); 
vtempi2] - (a iO] * bilj) - (bioj * ail]); 
Vcopy(dest, vtemp); 

} 

•endif 

/* Vector dot product */ 
•ifndef Vdot 
float 
Vdot(Vector a, Vector b) 
{ 

return a[0] * b[0] + a[l] * b[l) + a[2) * b[2); 
) 
•endif 
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