
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1993

Parallel hierarchical radiosity rendering
Michael Brannon Carter
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons, Electrical and Electronics Commons, and the
Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Carter, Michael Brannon, "Parallel hierarchical radiosity rendering " (1993). Retrospective Theses and Dissertations. 10409.
https://lib.dr.iastate.edu/rtd/10409

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/10409?utm_source=lib.dr.iastate.edu%2Frtd%2F10409&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note viill indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800,'521-0600

www.manaraa.com

www.manaraa.com

Order Number 9821126

Parallel hierarchical radiosity rendering

Carter, Michael Brannon, Ph.D.

Iowa State University, 1993

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

Parallel hierarchical radiosity rendering

Michael Brannon Carter

A Dissertation Submitted to the Graduate

Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Electrical Engineering and Computer Engineering
Major: Computer Engineering

by

Approved:

In Charge of M^or W^l

For the Maj6r DÎenartment

For the Graduate College

Iowa State University
Ames, Iowa

1993

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

DEDICATION

As with all accomplishments in one's life, recognition is due to those who helped make them

possible. I am speaking primarily of my parents, Everett and Murrel Carter. This dissertation

was wrought as much by their hands and hearts as by my own. Without their lifetime of patient

nurturing, love, understanding, and wisdom, I would never have had the chance to leam. This

one's for you, Mom and Dad!

www.manaraa.com

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS xi

CHAPTER I INTRODUCTION 1

1.1 Realistic Image Synthesis 1

1.1.1 General 1
1.1.1.1 Geometric object modeling 1

1.1.1.2 Tessellation 2
1.1.1.3 Discretization 2

1.1.1.4 Light reflection models 2

1.1.2 The rendering equation 3

1.1.3 Ray tracing 4

1.1.4 Radiosity 5
1.1.5 Hybrid methods ; 7

1.2 Parallelism in Computer Graphics 8

1.2.1 Non-realistic 8
1.2.1.1 Pixel-Planes 5 8

1.2.1.2 The Pixel Machine 9
1.2.1.3 SGI Reality Engine 10

1.2.2 Ray tracing 11
1.2.2.1 LINKS-1 11

1.2.2.2 Hypercube Ray Tracer 11

1.2.2.3 Other work 12

1.2.3 Radiosity 12

1.3 Structure and Aim of This Dissertation 12

CHAPTER II SYMMETRIC RADIOSITY 14

2.1 Introduction 14

2.2 Existing Methods 15

2.3 Reformulating the Radiosity Equation 16

2.3.1 Coupling factors 16

2.4 Solution Techniques 17

2.4.1 Direct solution 17

2.4.2 Simple iterative techniques 17
2.4.2.1 Jacobi iteration 18

2.4.2.2 Gauss-Seidel iteration 18

2.4.2.3 Progressive radiosity (shooting) 19

I

www.manaraa.com

iv

2.4.3 Other iterative techniques 19

2.4.4 Method of conjugate gradients 20

2.5 A Practical Comparison 21

2.6 Applicability to Hierarchical Methods 24

2.7 Summary 25

CHAPTER in HIERARCHICAL METHODS 26

3.1 Introduction to Hierarchical Methods 26

3.2 Hierarchical iV-body Methods 26

3.2.1 Appel's A^-body algorithm 26
3.2.1.1 Bounding the interaction error 26

3.2.1.2 The algorithm 28
3.2.1.3 Analysis of time complexity 28

3.2.2 Barnes and Hut's N-body algorithm 31

3.2.3 Greengard's fast multipole algorithm 31

3.2.3.1 Bounding the interaction error 32

3.2.3.2 The algorithm 34

3.2.3.3 Analysis of time complexity 36

3.3 Hierarchical Radiosity Methods 37

3.3.1 Patch couplings and link splitting 38
3.3.2 Hanrahan's method 42

3.3.3 Smits' method 43

3.4 Problems Amenable to Hierarchical Methods 44

CHAPTER IV HIERARCHICAL RADIOSITY ENHANCEMENTS 45

4.1 Introduction 45

4.2 Background and Definitions 46

4.3 Discussion 46

4.3.1 Alternation of error types 46

4.3.2 Rowsum correction 48

4.3.3 Clustering of polygons 50

4.3.4 Airtight occlusion testing 52
4.3.5 Binary vs. quadtree subdivision 55

4.3.6 Flaw in area/form factor threshold reasoning 55

4.3.7 Link subdivision 56

4.3.8 Unidirectional vs. bidirectional links 56

4.3.9 Coupling estimates 57

www.manaraa.com

V

4.3.10 Estimation of error in coupling estimates 57

4.4 Results 58

4.5 Summary 58

CHAPTER V MAKING THE HIERARCHICAL METHOD PARALLEL 61

5.1 Elements of a Good Parallel Program 61

5.2 Statement of Algorithm 62

5.3 Observations 67

5.4 Identifying Sources of Parallelism 68

5.4.1 Data parallelism 68
5.4.2 Operational parallelism 68

5.5 Data Decomposition Strategy 69
5.5.1 Node hierarchy 69

5.5.1.1 Hierarchy decomposition method 1 71

5.5.1.2 Hierarchy decomposition method 2 72

5.5.1.3 Hierarchy decomposition method 3 74
5.5.1.4 Hierarchy decomposition method 4 75

5.5.2 Link heap 76

5.6 Critical Operations 76

5.6.1 Random all-to-all communication 77

5.6.2 Link refinement 77

5.6.3 Reheapifying 83

5.6.4 Hierarchical vector operations 83

5.6.5 Hierarchical matrix-vector multiply 84

5.6.6 Writing the answer file 90

5.7 Results and Analysis 91

5.7.1 A visit from reality 92

5.7.2 Revised algorithm 96

CHAPTER VI SUMMARY AND FURTHER RESEARCH 103

6.1 Summary 103

6.2 Further research 103

6.2.1 Optimizations to existing code 103

6.2.2 Other areas of investigation 103

6.2.2.1 Exact coupling factors 104

6.2.2.2 Discretization error 104

6.2.2.3 Specularity 105

www.manaraa.com

vi

BIBLIOGRAPHY 106

APPENDIX 114

Header file slal.h 115

Header file proto.h 117

Source file slal.c 120

Source file solvere 129

Source file patch.c 135

Source file heap.c 155

Source file matvec.c 161

www.manaraa.com

vii

LIST OF FIGUBES

Figure 1: Three-point transport geometry 4

Figure 2: Solver iteration counts 22

Figure 3: Solver time 23

Figure 4: Monopole approximation 27

Figure 5: Shell structure about X 28

Figure 6: Interaction list of a computational box 35

Figure 7: Interaction between two clumps of particles 36

Figure 8; Physical and hierarchical interpretation 39

Figure 9: Link refinement steps preceding Figure 8 40

Figure 10: Tartan artifact 49

Figure 11: Coupling estimate and actual coupling 50

Figure 12: Rowsum corrected scene 51

Figure 13: Construction of waist hull 53

Figure 14: Harpsichord practice room without rowsum correction 59

Figure 15: Harpsichord practice room with rowsum correction 60

Figure 16: Construction of composite hierarchy 64

Figure 17: Couplings in a patch hierarchy 64

Figure 18: Structure of coupling matrix 65

Figure 19: Cases of parallel link subdivision 70

Figure 20: Hierarchy decomposition method 1 71

Figure 21: Hierarchy decomposition method 2 73

Figure 22: Hierarchy decomposition method 3 74

Figure 23: Hierarchy decomposition method 4 75

Figure 24: Decomposition of example hierarchy 86

Figure 25: Loci of communication in Hprep 88

Figure 26: Locus of link contribution data 90

Figure 27: Link contribution phases vs. processor for original algorithm 93

Figure 28: Typical output from a 64 PE run 97

Figure 29: Time spent in link refinement phases vs. processor 98

Figure 30: Time spent in link contribution phases vs. processor 99

Figure 31: Histogram of link connectivity vs. processor number 100

Figure 32: Time spent in a single refine step vs. processor number 101

www.manaraa.com

Figure 33: Performance vs. number of PEs

www.manaraa.com

ix

LIST OF TABLES

Table 1: Opcount metrics of various solvers 22

Table 2: Solver comparison for various geometries on 1000 patches 23

Table 3: Operation count metrics for various hierarchical solvers 24

Table 4: Program performance report 58

Table 5: Situations in parallel link subdivision 69

Table 6: Situations in splitting left link end in parallel CO

www.manaraa.com

X

LIST OF ALGORITHMS

Algorithm!: Jacobi iteration 18

Algorithm 2: Gauss-Seidel iteration 18

Algorithm 3: Shooting with sorting and ambient 20

Algorithm 4: Preconditioned conjugate gradients 21

Algorithm 6: Computing accelerations hierarchically 29

Algorithm 6: Greengard's fast multipole algorithm 37

Algorithm 7: Hierarchical radiosity 39

Algorithm 8: Alternation of error types 48

Algorithm 9: Airtight occlusion test 54

Algorithm 10: Waist plane construction 55

Algorithm 11: Improved hierarchical radiosity 63

Algorithm 12: All-to-all communications 78

Algorithm 13: Serial link refinement 79

Algorithm 14: Parallel link refinement 83

Algorithm 15: Parallel reheapify 84

Algorithm 16: Serial hierarchical matrix-vector multiply 87

Algorithm 17: Parallel hierarchical vector preparation 89

Algorithm 18: Parallel link contribution accumulation 91

Algorithm 19: Parallel partial product propagation 92

Algorithm 21: Revised parallel link contributions 94

Algorithm 20: Revised parallel link refinement 95

Algorithm 22: Revised parallel reheapify 96

www.manaraa.com

xi

ACKNOWLEDGMENTS

A project such as this necessarily cannot be the product of one heart, mind or hand. Many

types of support came together from many sources to make it possible.

lb John Gustafson, my friend and mentor, I extend my thanks for hours of excellent discus
sion. I believe we have learned much from one another, and are richer men for it.

To Denise Hayward, my soul-mate, goes my deepest gratitude for constant encouragement,

moral support, and love. Through worse and better, you have been there with me; there's no way

to go but ever upward, now.

To those who are seldom recognized and often overlooked, I reserve a special thanks. Peggy
Pollock and Nan Ripley have made thB wheels turn freely for two years now. Take your well-

deserved bows.

This work was funded by Ames Laboratory which is operated for the U. S. Department of
Energy by Iowa State University under contract No. W-7405-eng-82. This dissertation has been

assigned DOE report number IS-T 1655.

www.manaraa.com

1

CHAPTER I

INTRODUCTION

In this dissertation, the step-by-step development of a scalable parallel hierarchical radiosity

tenderer is documented. First, a new look is taken at the traditional radiosity equation, and a new

form is presented in which the matrix of linear system coefficients is transformed into a symmet

ric matrix, thereby simplifying the problem and enabling a new solution technique to be applied.

Next, the state-of-the-art hierarchical radiosity methods are examined for their suitability to par
allel implementation, and scalability. Significant enhancements are also discovered which both

improve their theoretical foundations and improve the images they generate. The resultant hier
archical radiosity algorithm is then examined for sources of parallelism, and for an architectural

mapping. Several architectural mappings are discussed. A few key algorithmic changes are sug
gested during the process of making the algorithm parallel. Next, the performance, efficiency, and

scalability of the algorithm are analyzed. The dissertation closes with a discussion of several ideas
which have the potential to further enhance the hierarchical radiosity method, or provide an

entirely new forum for the application of hierarchical methods.

1.1 Realistic Image Synthesis
1.1.1 General

Realistic image synthesis is a subdiscipline of computer graphics which deals specifically with
producing, or rendering, images that look as realistic or true-to-life as possible. Applications of

realistic image synthesis lie in cinematography, stagecraft, architectural design, simulation, and

virtual reality.

On a conceptual level, these images are rendered by modeling the physics of light propagation

in a scene as well as is either practical or well-understood. The key problem is to solve for the

equilibrium light energy (or power) transfer between all surfaces of a collection of objects (scene).

This is called a global illumination solution because light leaving any surface has the ability to

affect the brightness of all other surfaces in a scene.

In nature, this problem is a continuous one. That is, a photon of light may arrive or depart

from an (essentially) infinite number of positions on a surface. The solution to the continuous

radiosity problem is not tractable for any but the simplest configurations of objects. In order to

make the problem computationally tractable for complex scenes, a number of simplifying assump

tions and approximations are made.

1.1.1.1 Geometric object modeling

In order to render a picture of a scene, one must be able to represent the scene in some way.

This is usually done by representing the various objects in a scene with collections of simpler geo

www.manaraa.com

2

metric primitives such as polygons, spheres, cylinders, bivariate patches (such as spline patches

or Bézier patches), implicit surfaces, etc. However, no physical objects can be accurately modeled

with perfect geometric primitives; real objects always have scratches, dents, texture, creases, etc.

which are difficult to model. Therefore, a certain permanent loss of realism happens during the

modeling process. Much research has been done on how to effectively model physical objects and

their properties. Broad areas include constructive solid geometry (CSG), primitives, modeling

operations, and reflectance models.

1.1.1.2 Tessellation

Previously, mention was made of modeling a physical object with curved geometric primitives

such as spheres and bivariate patches. Some rendering methods, such as ray tracing (to be dis

cussed later), are able to directly render any curved surface so long as certain constraints are met.

Other methods, such as radiosity (also to be discussed later), are presently unable to render

curved surfaces of any kind. The approach that is generally taken to get around this limitation is

to approximate a curved surface with a mesh of polygons. The process of generating a mesh of
polygons to approximate a curved surface is called tessellation.

Tessellation represents a further degradation of realism in the modeling process. A tessellated
sphere is an approximation to a real sphere, which is in turn an approximation to the physical

object to be rendered. It is difficult to quantify the error introduced during either modeling pro
cess.

1.1.1.3 Discretization

In a physical scene, light propagates from surface to surface in a continuous manner. Every
point on every surface may have a different brightness. An essentially infinite number of such

points and brightnesses exist in a physical setting. Since a computer is incapable of representing

an infinite number of brightnesses in a finite amount of memory, an approximation to the contin

uous brightness must be made. This is done by discretizing the scene into finite-sized areas, or

patches, which will be assumed to be of constant brightness. In this way, rendering is transformed

from a continuous problem into a discrete problem suitable for numerical solution on a computer.
Again, it is difficult to quantify just how much realism is lost when the problem is discretized. It

will become clear in Chapter IV that quantifying discretization error can potentially lead to
greatly-improved rendering methods.

1.1.1.4 Light reflection models

Once the physical shapes of primitives in the scene have been modeled, one must then model

the physics of light reflection from the surfaces. Physical surfaces have many different modes of

light reflection. For example, the surface of a sheet of paper reflects light in a very different way

than the surface of a mirror.

Surfaces like a sheet of paper, a pile of powder, velvet, and most other rough surfaces exhibit a

light reflection mode called diffuse reflection. In this mode, the amount of light energy leaving a

surface is independent of both the orientation at which the light arrives, and the orientation at

www.manaraa.com

3

which it leaves. This is the simplest form of light reflection, and the easiest to model. Under this

reflection mode, a surface's reflection properties are completely described by a single scalar value,

called reflectance, for a given wavelength of incident light. Of course, no physical surface is a per

fect diffuse reflector of energy, and thus, error is introduced into the rendering.

More complex is the directionally dependent reflection mode known as specular reflection. In
specular reflection, the intensity of light leaving a surface depends upon the angle at which it

impinges on the surface, and the angle at which it leaves the surface. Thus, the reflectance of a

specular surface can be a function of up to four angular variables (azimuth and elevation for

incoming and outgoing directions) plus a wavelength variable and a polarization angle. Most real

surfaces have significant specular components. Although less error will be introduced into a ren

dering by attempting to model a surface's specularity, the calculations involved are made much
more difficult. Ray tracing has made significant progress modeling arbitrai^ surface specularity,

but only very limited progress has been made with scenes demanding accurate diffuse reflection

models [Immel 86, Billion 91].

Transparent or translucent surfaces not only reflect and absorb energy, but transmit it as

well. Transmission, like reflection, can take the form of either diffuse or specular character. Once
again, ray tracing accounts for transmission well. The radiosity method has yet to effectively deal

with any form of transmission.

There are still other issues involving surface physics which have not been addressed, and can

contribute significant error to a realistic rendering. Most obvious is the dependence of surface

reflectivity upon the wavelength of the incident radiation. The reflectivity of physical surfaces

depends strongly on the wavelength of incident light. Most current reflectance models allow the

magnitude of reflected light to change with wavelength, but do not allow the specular angular

dependence to vary with wavelength [Westin 92, and others].

Less important effects which are not modeled by any existing reflectance models are fluores

cence, polarization, interference, and diffraction. Fluorescence occurs when a surface emits light

of a wavelength that is different from the incident light wavelength. This coupling between wave
length bands is completely ignored by all existing renderers. Interference, and diffraction effects
are only relevant in the presence of a coherent light source, and are usually of negligible impor

tance. It is likely that drastically different rendering methods will be required to properly account

for these phase- and path-dependent effects.

1.1.2 The rendering equation

We will now discuss the mathematical foundations which have been developed for the field of

realistic image synthesis. In some cases, such as light reflection models, the mathematics is rela

tively new rWhitted 80, Cook 82, Kajiya 85, du Montcel 85, He 91, Billion 91, Westin 92, Ward 92].
In other cases, such as the basic radiosity equation, the theory dates back to radiative heat trans

fer literature of the 1950's [Sparrow 78, and earlier].

www.manaraa.com

4

The "Rendering Equation" [Kajiya 86] is a unifying, high-level, continuous expression of the

problem to be solved for a realistic or nonrealistic rendering. All known rendering methods, both

realistic and nonrealistic, can be derived from this unifying equation via various special cases,

and assumptions. The rendering equation is expressed as follows:

I { x , x ') = g (x , x ') I ^ G (% , % ') + ^ ç { x , x ' , x ") I { x ' , x ") d x "
L 5 —

(1)

where:
x,x',x"

H x , x ')

g i x , x ')

t { x , x ')

p (x , x ' , x ")

S

are three separate points in the scene,

is the light intensity passing from point a:' to

is the visibility function between point x' and *,

is the light intensity emitted by point x' toward

is the fraction of light scattered by point x' from x" toward x, and

is the hemisphere above x' from which light may arrive.

The integrand of (1) expresses the light transport from x" to to %. This three-point form is

necessary to account for the directional reflectivity dependence of specular surfaces. The setup for

(1) may be expressed graphically, as shown in Figure 1. The function g(,x,x') requires further
explanation. This function takes on the value 0 if there is not an unoccluded straight-line path

between points x and x', and the value 1 if the path between them is clear. The rendering equa

tion is only valid for a single wavelength of light at a time. The rendering equation is not amena

ble to solution by computer in the form presented above, so various simplifications are made. The

two most predominant ones are presented below.

Surface x

Surface x

Surface x'

Figure 1: Three-point transport geometry

1.1.3 Ray tracing

Ray tracing is a technique developed by Whitted [Whitted 80] which traces light propagation

paths backward from the eye to a light source. It accounts well for diffuse and specular reflection.

www.manaraa.com

5

but only locally at a patch. Ray tracing is implemented such that all rays are completely indepen
dent, and the system has no memory from one ray to the next. Therefore, ray tracing as developed
by Whitted does not solve the global illumination problem.

Mathematically, the rendering equation can be written in operator form [Courant 53] as:

I = g e + g M I , (2)

where M is the linear operator given by the integral in (1). We may solve (2) in the following way:

(l - g M) I = g z

/ = { l - g M) ~ ^ g E

= [l + g M + {gM)^+ igM)^ + . . .] g E

= g z + g M g e + g (. M g) ^ E + g (M g) h +... (g)

Each term in (3) can be thought of as representing one "bounce" of a ray as traced through the

scene. Furthermore, only one ray is followed after each bounce, so the operator M is modified to

account for this:

I = g £ + g M Q g t + g (. M o g) h + g (M Q g) ^ E + . . . (4)

where M Q is the ray tracing scattering model.

A large body of literature exists for ray tracing. The technique has been extended in may ways

since its introduction in 1980. Stochastic sampling techniques have been used to extend the range

of optical effects possible with ray tracing. Some of these effects include fuzzy shadows, depth of
field, fog, and area light sources [Cook 84, Cook 86, Lee 85]. A great number of geometrical primi

tives have been analyzed, and numerical methods created to ray trace them [Edwards 82, Kajiya
82, Hanrahan 83, Kajiya 83a, Fontes 84, Kajiya 83b, Kajiya 84, Sederberg 84, van Wjk 84a, van

Wijk 84b, Bronsvoort 85, Tbth 85, Joy 86, Sweeny 86, Burger 89, Giger 89, Hart 89, Kalra 89,

Lischinski 90, Nishita 90]. Innovative data structures have been developed to aid in the ray-object

intersection operation [Rubin 80, Glassner 84, Coquillart 85, Fujimoto 86, Kay 86, Jan sen 86,
Naylor 86, Arvo 87, Goldsmith 87, Fussell 88, MacDonald 88, Devillers 89, Montani 90, Thirion

90]. Constructive solid geometry (CSG) has been explored as a way of combining basic primitive

types into more complex objects [Cordonnier 85, Kunii 85, Wyvill 85, Gervautz 86, Naylor 86,

Wyvill 86, Youssef 86, Arnaldi 87, Cottingham 89, Getto 89, Carter 89, Montani 90]. A method has

been developed which "blends" two or more implicit surfaces into a smoothed version of the collec

tion [Blinn 82, Filip 89]. For more general types of objects, deformations may be applied [Barr 84,

Barr 86, Sederberg 86].

1.1.4 Radiosity

The method of radiosity rendering was developed from the field of radiative heat transfer

[Sparrow 78, Siegel 81]. It attempts to solve for the global balance of energy transfer between

objects in the scene. The radiosity technique is correct only for perfectly diffuse surfaces, although

www.manaraa.com

6

recent improvements have extended the technique, in a crude way, to include some specular
effects. The continuous radiosity equation [Cohen 92] is:

b (%') = e (a:') + p (*') Jô (*) C? (*, x ') V (x , x ') d A (5)
X

COS0, COS0„

where:
b (,x) is the radiant intensity at point x in the scene and is given in units of

watts per square meter,

e (x) is the radiant emissivity at point x in the scene in watts per square
meter,

p (z) is the diffuse reflectivity of point x in the scene, is unitless, and repre
sents the fraction of light reflected back into the hemisphere above
a:,

GdA is the differential form factor between x and is unitless, and repre
sents the fraction of light emitted from * that reaches x ' ,

0 j i s t h e a n g l e b e t w e e n t h e s u r f a c e n o r m a l a t x a n d x ' - x ,

6g is the angle between the surface normal at x ' and x - x ' , and

V (x , x ') is the visibility between points x and x ' and is 1 if the points are mutu
ally visible and 0 otherwise.

Equation (5) is a continuous equation, and represents a problem of an infinite number of vari

ables. In order to make it computationally tractable, the environment is discretized into N

patches which are assumed to be of constant intensity. The discrete radiosity equation [Groral 84]

is:

N

bi = ei + Pi^bjFij (6)
j = y

where:
6, is the radiant intensity of patch i given in units of watts per square

meter,
e, is the radiant emissivity of patch i in watts per square meter,

p. is the reflectivity of patch i, is unitless, and is the fraction of incident
light that is reflected back into the hemisphere above the patch, and

F^j is the "form factor" from patch i to patch j, is unitless, and represents
the fraction of light leaving patch i that reaches patch j.

Equation (6) is applied at every patch j in a scene. Thus, a system of linear equations is pro

duced that, when solved, gives a global illumination solution for the radiant intensity at every

patch in the scene.

www.manaraa.com

7

The earliest radiosity Tenderers formed the dense matrix Fy, and solved it using conventional

methods such as Gaussian Elimination with partial pivoting [Goral 84]. Such an approach is of
0(N^) time complexity because of the solution process.

It was later noted that the linear system is diagonally dominant, and therefore amenable to

iterative methods such as Jacobi iteration and Gauss-Seidel iteration [Nishita 85, Cohen 85].
Coupling iterative solution to the fact that a radiosity solution need be no more accurate than

three or four decimals, the time complexity of the problem is reduced to 0(.N^). This reduction in
complexity is because iterative solvers of this type are 0(.N^) per iteration for a dense system, and

take 0(1) iterations to converge to the fixed precision criterion. Also, at this point, note that deter
mination of the form factor matrix is of OiN^) time complexity because, in general, there are

N^~N nonzero matrix elements. At this point, a further reduction in the radiosity algorithm's

time complexity is only possible if both the matrix setup and the system solution are improved.

In 1991, Han rah an, Salzman and Aupperle [Hanrahan 91] applied a hierarchical method sim

ilar to the 0{N log AO AT-body algorithm [Appel 85] to the construction of the form factor matrix.
The method takes advantage of the fact that since the final radiosity solution is only needed to a

fixed precision, then the form factors may be approximated, in a hierarchical fashion, to a com
mensurate level of accuracy. Evidence is presented, although a convincing proof is not, that the

algorithm approximates the form factor matrix with 0{N) blocks. Thus, matrix setup time is

reduced in complexity to 0(iV), and the matrix-vector multiply kernel of common iterative solvers

is also reduced to 0(AO. Thus, the overall time complexity of the hierarchical radiosity algorithm

is 0(N).

Only one researcher has succeeded, so far, in extending the radiosity method to include specu

lar reflection effects without resorting to ray tracing [Sillion 91]. This highly innovative method

uses spherical harmonics to accumulate the directional light intensity variations at each vertex in

the scene. The method, however, consumes a tremendous amount of memory relative to the stan

dard diffuse radiosity implementation. This limits the resolution of specular effects severely.

1.1.5 Hybrid methods

Ray tracing accounts well for specular reflection, but does not solve for a correct global illumi

nation solution. Radiosity solves for global illumination, but has not shown itself to be easily

extended to handle directional lighting effects, including specularity. Several researchers have

taken the logical next step, and attempted to create a rendering method which is a fusion of ray

tracing and radiosity, combining the best aspects of both methods [Chen 90, Hermitage 90, Immel

86, Jessel 91, Shirley 90, Shirley 91, Sillion 89, Wallace 87, Ward 88].

This approach, however, is not as straightforward as it might seem. One's first instinct might

be to use ray tracing to handle specular effects, and radiosity to handle diffuse effects, and provide
the global illumination solution. Unfortunately, a global illumination solution is not merely a lin

ear superposition of the two reflection modes. Some success has been enjoyed by these methods,
but they remain physically incorrect though pleasing in appearance of results.

www.manaraa.com

8

1.2 Parallelism in Computer Graphics
Parallelism has come slowly to the computer graphics community. 'Wrtually every research

paper done until the late 1980's was based on work done on the VAX 11/780 or similar serial sys

tems. Parallelism was first applied to graphics rendering hardware. It was then applied to the
more computationally intensive rendering methods such as ray tracing and radiosity.

1.2.1 Non-realistic

A wide variety of graphics hardware has been developed since the 1980's which uses parallel

processing concepts to accelerate drawing of geometric primitives. Notable architectures among

these are Pixel-Planes 5, Pixel Machine, and SGI Reality Engine.

1.2.1.1 Pixel-Planes 5

The Pixel-Planes 5 (Pxpl5) graphics computer was developed at the University of North Caro

lina at Chapel Hill by Henry Fuchs et. al. [Fuchs 89] It is a heterogeneous multiprocessor which

acts as an attached processor to a high-end workstation. It has applications for real-time simula
tions, volume rendering for medical imaging, scientific visualization, and realistic image synthe

sis via the radiosity method. Peak performance is 1 million Phong-shaded triangles per second,
39,000 Gouraud shaded polygons per second, 13,000 smooth shaded spheres per second, or 11,000

shadowed polygons per second. This puts Pxpl5 well into the real-time environment for images
consisting of a relatively small number of polygonally defined objects.

The Pxpl5 system consists of five basic subsystems: graphics processors, renderers, frame

buffer, a host interface, and a token ring interconnect. The graphics processors are the floating

point math engines of the Pxpl5 system. It is their job to perform the 3D geometrical transforma

tions on primitives, and generate rendering requests to the renderers. There may be up to 32
graphics processors in a Pxpl5 system. The array of graphics processors effectively comprises a

MIMD computer.

Next come the renderers. A Tenderer is a SIMD array of 128x128 pixel processors, memory,

and controller. Renderers are assigned to 128x128 blocks of pixels in the frame buffer to calculate

their final contents from requests generated by the Graphics Processors. A SIMD array is a logical

choice for pixel operations since such operations are simple, but spread over a large area. The

1280x1024 frame buffer is tiled into 128x128 patches, and a Renderer assigned to each patch.

This way, a large number of Renderers may be actively rendering portions of the final image in

their local buffers simultaneously. Renderers are built on the concept of logic-enhanced memory

chips. A single Renderer chip contains 256 pixel processors, 208 bits of fast SRAM per processor,

and one quadratic expression évalua tor (QBE). The QEE evaluates the expression

Ax + By + C + Dx' + Exy + Fy"^ with global inputs A-F. This is useful for shading curved surfaces

and in calculating a spherical radiosity model. Furthermore, each pixel processor has access to an

external 4K bits of additional backing store in the form of VRAM. This gives each processor a sig
nificant amount of memory to use for Z-buffering or Constructive Solid Geometry. Only when the

Renderer is completely finished with its block of pixels are they written to the frame buffer. This

www.manaraa.com

9

write-once strategy helps to reduce the I/O bottleneck that exists at the frame buffer. There may

be up to 16 Renderers in a fully configured Pxpl5 system.

The Pxpl5 frame buffer is built in a conventional manner from VRAMs and supports a

1280x1024 display refreshed at 72 Hz with 24 bit true color, and a color lookup table. Two token

ring nodes are allotted for the frame buffer. The host interface is via programmed I/O.

Connecting the four other components is the ring network. It is an eight channel token ring

with an aggregate transfer rate of 160 MWord per second (4 byte words). Access nodes are pro

vided for the Graphics Processors, Renderers, and frame buffer, each with a 20 MW per second

bandwidth. In this ring network lies the primary bottleneck in the Pxpl5 architecture: it will only

support a limited number of graphics processors and renderers, and it cannot be expanded.

The Pxpl5 system has many good features working in its favor. Graphics processors are flexi

ble enough that they can implement virtually any graphics algorithm. This is in large part

because the graphics processors are a plain vanilla MIMD computer. Also, since the renderers are

programmable, a great amount of flexibility is maintained on the pixel level. Pxpl5 also enjoys the
considerable convenience of being expandable in units of one renderer or graphics processor.

Disadvantages include much degraded performance for shadowed polygons, a complex pro

gramming environment (heterogeneous parallel), and a serious scalability problem with the ring

network. Although the fast radiosity technique is being developed for Pxpl5 and shows promise,
the ray-tracing method will gain no benefit from PxplS's unique architecture.

1.2.1.2 The Pixel Machine

The Pixel Machine was developed at the AT&T Bell Laboratories in Holmdel, New Jersey by
Michael Potmesil, Eric M. Hoffert, et. al. [Potmesil 89] It is a homogeneous MIMD image com

puter with a distributed frame buffer. Its applications lay in the areas of real-time simulations,

volume rendering, ray-tracing, and scientific visualization.

DSP32 Digital Signal Processors are used as the computing elements in this novel approach

to parallel image computing. The DSP's are organized into two groups: a group of nine DSP's in a

pipeline configuration (pipe nodes), and a 2D mesh of 16 - 64 processors to actually operate on

pixel data (pixel nodes). Each DSP32 is capable of a maximum floating point performance of 10

MFLOPS (5 MFLOPS of add plus 5 MFLOPS of multiply).

The front-end pipeline of nodes is meant to perform operations that are intrinsically sequen
tial in nature. The input of the pipeline is fed by the Pixel Machine's host computer, and the last

node in the pipeline may either send its data to all pixel nodes or back to the host. A second pipe

line of nine nodes may be added to the system to form two parallel pipelines, or one 18 node pipe

line.

Pixel processors are connected to their four nearest neighbors in a closed torus network.

These nodes are used for operations that are intrinsically parallel in nature. Each pixel node has

an interleaved portion of the distributed frame buffer accessible to it. In other words, if we have

processor {p,q) in an array of m xn pixel nodes, a processor-space pixel (i,j) is mapped to

www.manaraa.com

10

screen pixel (x , y) by: * = m i + p , and y = n j + q . This interleaved scheme is a very effective

load balancing mechanism for many classes of parallel graphics algorithms [Fuchs 77, Parke 80,

Carter 90].

There are several types of communication paths in the Pixel Machine architecture. Each pixel

and pipe node is connected to a global VMEbus. This implements the host-to-node communication
path. Pipe nodes are connected by FIFOs. There is also a serial asynchronous link between pipe

nodes in the reverse direction of the FIFOs. Finally, there is the already-described connection of

pixel nodes to their four nearest neighbors.

One great advantage that the Pixel Machine enjoys is use of off-the-shelf components such as

the DSP32. Furthermore, since it is a homogeneous parallel computer, the programmer enjoys a
less complex programming environment. The Pixel Machine is remarkably flexible in its ability to

implement new graphics algorithms due to its medium grain size. Finally, the distributed inter
leaved frame buffer approach chosen by the engineers scales by small increments.

Disadvantages include a serial bottleneck in the form of the pipeline. Also, the Pixel Machine
does not achieve real-time performance for any application listed due to its considerable overhead

to start up an operation. Programmability has been traded off against absolute speed in this

architecture.

1.2.1.3 SGI Reality Engine

Recently, Silicon Graphics, Inc. (SGI), introduced their third generation Geometry Pipeline
architecture [SGI 92]. It is a dedicated, special-purpose, real-time, non-realistic rendering system

which utilizes both MIMD and SIMD parallel processing paradigms to achieve the highest perfor

mance of any contemporary system. It has a rich functional capability, including; simple lighting

models, smooth polygon shading, Z-buffering, advanced anti-aliasing, fog effects, and the most

advanced texture-mapping capabilities available.

The Reality Engine architecture has three major functional blocks. They are the geometry

subsystem, the raster subsystem, and the display subsystem. The geometry subsystem utilizes

eight advanced RISC microprocessors, operating in MIMD parallel fashion, to perform geometric

coordinate transformations. Polygons with more than three vertices are decomposed into two or

more triangles by the geometry subsystem, also. Only triangles are allowed because the next sub
system, the raster subsystem, is specifically engineered to render only triangles at high speed.

The raster subsystem is composed of a proprietary arrangement of custom VLSI processors

and memory to scan-convert triangles into pixel data and process them into the frame buffer. Five

parallel Pixel Generator processors perform the scan-conversion of triangles into pixel data. This

pixel data is then optionally routed through the texture processors for texture-mapping. Final

pixel values are then stored in the frame buffer.

Finally, the display subsystem takes pixel values from the frame buffer, and generates an

analog video signal in any of several standard formats, including two HDTV formats.

www.manaraa.com

11

1J2.2 Ray tracing

1.2.2.1 LINKS-1

The LINKS-1 system was developed by Hiroshi Deguchi et. al. at Osaka University, Suita,

Japan [Deguchi 86]. It was developed specifically to perform high-speed ray tracing. LINKS-1

uses a loosely coupled set of microcomputers, divided into functional groups, to carry out ray trac

ing.

The LINKS-1 architecture is in the form of a binary tree of processors. These processors are

divided into two logical groups: Node Computers and Leaf Computers. Node Computers make up

the body of the tree, and the Leaf Computers perform the actual ray tracing. Node Computers and

Leaf Computers are connected in a tree structure by the Intercomputer Memory Swapping Unit.

This device is able to swap a block of memoiy between a pair of connected nodes. Node Computers

and Leaf Computers are collectively called Unit Computers. Frame buffer data is taken from the

Leaf Computers by the Data Collector mechanism and concentrated into the frame buffer for dis

play. The Data Collector represents another potential serial bottleneck in the LINKS-1 system.

Input to the LINKS-1 system consists of a potentially large database of geometrical primitives

which comprise a scene to be ray-traced. This database of objects is distributed to the Node Com
puters and Leaf Computers via the node computers. Note that for even modest object database

sizes, each Unit Computer will be able to store only a portion of it. Thus, a large part of the overall

architecture is devoted to efficient sharing of the object database among the Leaf Computers.

Only the Leaf Computer perform the actual ray-tracing algorithm.

LINKS-1 could be programmed for an image synthesis algorithm other than ray-tracing due

to the flexibility and programmability of its Unit Computers. One would expect it only to achieve

results similar to that of the Pixel Machine for other graphics algorithms, however, due to the

similarity in grain size and frame buffer characteristics between the two systems.

Again, in the LINKS-1 architecture, we see a serial bottleneck that ultimately limits the

whole system's performance. LINKS-1 has the distinction of two serial bottlenecks; one at the root

of the Data Distributor tree, and one at the frame buffer caused by the Data Collector. Further
more, the LINKS-1 system does not nearly run at interactive speeds, although it does show signif

icant speedup over previous ray-tracing implementations.

1.2.2.2 Hypercube Ray Tracer

The Hypercube Ray Tracer is a collection of programs developed for the Intel iPSC/2 parallel

computer [Carter 89]. It provides common geometric primitives, and an easy-to-use scene descrip

tion language. Its most important contribution is in the handling of very large object databases.

When one wishes to render a scene containing many thousands of primitives at high speed, one

encounters a problem early on when dealing with MIMD parallel computers—limited node mem

ory. The naive approach to ray tracing on distributed memory parallel computers has been to

duplicate the object database on all processors. With a large object database, there is insufficient

memory on eveiy node for this duplication. An object caching scheme is implemented in which the

www.manaraa.com

12

object database is distributed to permanent "home" locations across the nodes, and copies of
objects shuttled between nodes as needed. Since there is a high degree of spatial and temporal

coherence in the object database access patterns, this scheme is very effective at dealing with

large object databases.

Ray tracing is, at first blush, a trivially parallel application. However, the issues involved

with large object databases and load balancing make the problem nontrivial. The hypercube ray

tracer deals effectively with these problems and achieves high performance and reasonable scal

ability at the same time. Load balance is ensured by a master-slave arrangement where a single

controlling processor assigns small portions of the image plane to worker processors. When a
worker finishes rendering a block of pixels, they are shipped back to the master processor, and a

new block of pixels on the image plane is assigned to the worker. These pixels blocks are assigned

in a spatially coherent manner to improve the effectiveness of the object database caching scheme.

1.2.2.3 Other work

Others have also mapped the ray tracing algorithm to various existing general-purpose paral
lel architectures [Badouel 90, Priol 88, Priol 89, Hermitage 90].

1.2.3 Radiosity

Much less work has been done toward applying parallel processing to radiosity solutions.

Efforts to date include [Chen 89, Drucker 92, Guitton 91, Purgathofer 91].

One parallel implementation of a radiosity solver on a parallel machine is the SLALOM

benchmark [Gustafson 91]. SLALOM is an acronym for Scalable Language-Independent Ames

Laboratory One-minute Measurement. It is a fixed-time benchmark which attempts to capture

general salient features of scientific computing. A radiosity problem is solved in a right rectangu

lar box to a specified precision. A computer is tasked with solving the largest problem it can, mea

sured in patches, in less than one minute. The problem size, rather than time, is used as the

figure of merit for the benchmark.

SLALOM has been ported to run on the following parallel and massively parallel systems:

nCUBE 2, MasPar, Intel, Cray, SGI, Myrias, etc. Since the kernel operation of the first version of
SLALOM was a dense matrix solver, speed was uniformly high on all parallel machines [Slalom

90]. We will later show this algorithm to be horribly wasteful in terms of the amount of work per

formed to arrive at a given solution.

1.3 Structure and Aim of This Dissertation
This dissertation tracks the research, development, and implementation of a state-of-the-art,

parallel hierarchical radiosity renderer. An analysis of the standard radiosity equation, and meth

ods for solving it, is performed in Chapter II. This analysis shows several interesting things about

the development of radiosity solution techniques. It also discloses a previously unexploited sym

metry in the linear system of equations. The implications of the new-found symmetry are dis

cussed, and an algorithm is put forward to take advantage of it.

www.manaraa.com

13

Next, in Chapter III, the new hierarchical methods are described as applied to computer
graphics and other scientific disciplines. The two existing hierarchical radiosity methods are

reviewed, and commentary made. An effort is made to identify the properties of a physical prob

lem that make it amenable to a hierarchical method of attack.

Chapter IV discusses shortcomings and inconsistencies in the existing methods. Several new
improvements to the hierarchical radiosity methods are laid out and discussed. Results from a

serial implementation of the new algorithm are discussed and analyzed and compared against
existing results.

The new method is examined for sources of parallelism in Chapter V. Sources of parallelism

are identified, and decomposition strategies chosen for implementation on an nCUBE 2 parallel
computer. Performance and efficiency of the parallel implementation is discussed, together with

ways of further improving it.

During the course of this research, many ideas sprang to mind for which time was not avail

able for further pursuit. Many of theses future research possibilities are discussed, and a brief
summary of work performed is given in Chapter VI.

www.manaraa.com

14

CHAPTER II

SYMMETRIC RADIOSITY

2.1 Introduction
A new formulation of the radiosity equation is developed which has as its linear equation coef

ficients a symmetric matrix, rather than the non symmetric matrix in all other radiosity papers to

date. Such a reformulation has considerable computational advantages, among which are that

storage for the form factor matrix is reduced by half and that the more sophisticated Conjugate

Gradient solution technique can be brought to bear on the problem. Jacobi, Gauss-Seidel, "Shoot

ing", and Conjugate Gradient solvers are compared by operation count and experiment. The

method of Conjugate Gradients is shown to be uniformly superior to the other solver types, with

its advantage becoming overwhelming in highly reflective environments. One may observe that

the historical evolution of iterative solvers for radiosity problems seems to have increased the
solution time, not decreased it.

The formulation of a physical problem is often made to look as simple as possible from a sym
bolic viewpoint, without regard for computational issues. Since the theory of radiosity predates

high-speed computing, its usual formulation is conceptually terse, but computationally wasteful.

A major oversight in the analysis of the radiosity problem is pointed out in this chapter, and its

implications with regard to storage requirements and the selection of a fast solution strategy.

To date, the methods used to solve the radiosity equation have been taken strictly from the

backwaters of computational mathematics. Much more sophisticated methods exist than the anti

quated Gauss-Seidel iteration (of which shooting is a subtle variant), and should be exploited. In

most areas of computational mathematics, an effort is made to find a way of making a problem

symmetric; the radiosity problem formulation has stayed non symmetric in the literature ior eight

years.

Nowhere has the performance of multiple solver types been objectively compared for the radi
osity problem. Arguments are presented here based on operation counts and convergence rates.

The conclusion is drawn that solvers appear to have actually gotten slower over time.

With the advent of new hierarchical radiosity methods [Hanrahan 91, Smits 92, Carter 93b],

the time spent solving for patch radiosities has become more significant. Until recently, the major

ity of time in a radiosity rendering was spent calculating form factors. The new hierarchical meth

ods approximate form factors only to the accuracy needed, thus saving time and magnifying the

role of the solver.

www.manaraa.com

15

2.2 Existing Methods
Since its introduction to the computer graphics community in 1984, the radiosity equation has

been presented in a form similar to the following [Goral 84]:

N

^ J = (7)
i= I

where: bj is the brightness (radiosity) of patch j in W/m^,

Bj is the emittance of patchy in W/m^,

py is the reflectance of patchy,

Fjj is the form factor from patch i to patch7, and

N is the number of patches.

Equation (7) may be rewritten in vector-matrix notation in the following way:

b = e + PFb (8)

where: b, e are the brightness and emittance vectors,
P = d i a g (p j) , and

F is the form factor matrix.

Equation (8) may be arranged into the form of a system of equations to be solved:

(I - P F) b = e (9)

where I is the identity matrix.

I - P F is nonsymmetric in general because Equation (9) was initially solved in a

direct fashion using dense LU factorization and backsubstitution with partial pivoting [Goral 84]!

It was later shown that (I-PF) is diagonally dominant, and thus amenable to a number of iter
ative solution methods. Pivoting, certainly, is unnecessary unless patches exhibit fluorescence and

thus have reflectivities greater than unity. The first iterative method to be applied to the radiosity

equation was the Gauss-Seidel technique [Nishita 85, Cohen 85]. Gauss-Seidel and its close rela

tive, Jacobi iteration, remained popular for a number of years [Immel 86, Cohen 86].

The method of "Shooting" was then developed to progress smoothly toward the final solution.
In the following discussion, we will assume the shooting, sorting, and ambient version of "progres

sive radiosity" found in [Cohen 88]. Shooting offered the chance for quick gratification by produc

ing an image of acceptable quality quickly, and then proceeding toward the final solution more

slowly. The price one pays for this progressive radiosity approach, in its original form, is:

• Recalculation of form factors for a patch every time it is visited.
• 0(N) work between every update to find the patch with the largest un shot radiosity.
• 50% more memory references for the solution update itself
Note that recalculating the form factors for each patch is only necessary if one does not wish

to store the full coupling matrix. In the sequel, we will store the coupling matrix in the interest of

www.manaraa.com

16

fairness. While this is appropriate if the user wishes to quickly see a rough rendering, it is not
appropriate if only the final solution is needed.

2.3 Reformulating the Radiosity Equation
We begin with equation (9), and define the diagonal matrix A = diag^A^) where A,- is the

area of patch i.

(I - P F) b = e

Now, multiply through on the left by the patch areas.

(A - A P F) b = A e (10)

Multiplication of diagonal matrices is commutative, so interchange A and P , giving

{ A - P A F) h = A e (11)

Finally, multiply through on the left by P"' to yield the final form.

{ P - ^ A - A F) h = p - ^ A e (12)

Now, from the definition of form factors, we have the reciprocity relation, A,.Fy = AjFji. This
relation says, among other things, that the product AF is a symmetric matrix. Furthermore, since

P~^ is a diagonal matrix, the product P"'A is also symmetric. Therefore, the whole term

(P~^A - AF) is symmetric. Equation (12) is the formulation used in SLALOM since its introduc

tion as a benchmark in 1990 [Gustafson 91].

It has been shown that the radiosity problem can be reformulated as a symmetric system of

equations. Discussion of appropriate solution strategies in light of this new observation follows.

2.3.1 Coupling factors

Equation (12) suggests a way to modify the definition of coupling between two patches such

that the coupling from patch i to patchy is identical to the coupling fromji to t. The traditional def

inition of the form factor from patch i to patch j is:

1 f r cosé.cosi)),.

where: (t).and(fK are the angles between surface normals and ry, and

r^j is the vector from one differential area element to another.

The form factor was originally conceived this way because it was thought of as an area-aver

age of differential point-to-area form factors. This quantity is not symmetric with respect to i and
j. The product AF simply serves to undo the unneeded division by A, in the form factor definition.

We define:

. . COS(t).COS<t),.

= j j '-T-^dA,dAj
A.A. ^ ' ' i j

(14)

www.manaraa.com

17

Let us call Cij the coupling factor between patches i and J. This quantity is conceptually sim
pler to deal with because it is symmetric with respect to i and/ Since a coupling factor has units

of area, it also has the convenient property that when multiplied by a radiosity value, it gives
energy impinging on the coupled-to patch directly. Thus, equations written using the coupling fac

tor matrix C are energy balance equations, not energy density balance equations. Equation (12)
can be simplified to:

(P - ^ A - C) b = p - ^ A e (15)

2.4 Solution Techniques
Now that there is a symmetric system to solve, a number of new options are open. Direct solu

tion methods may still be used, but iterative methods are more effective.

2.4.1 Direct solution

Cholesky factorization (L D L ^) rather than L U factorization may be used. This cuts the solu
tion time, number of operations, memory references, and memory use in half when compared to

LU factorization. Cholesky factorization, however, is still O(N^) in the number of equations
(patches).

Most researchers have recognized that the solution to a radiosity problem is seldom needed
(or correct, in any realistic sense!) to more than three or four decimals. Even if the solution to a

radiosity problem were needed to fifteen or more decimals, direct methods would lose for some

value of N. This has been proved based on a condition number bound [Bjorstad 91b]. Even for

highly-reflective scenes, iterative methods will win for only a few hundred patches. Cholesky fac

torization, like LU, is therefore of little more than academic interest for radiosity problems.

2.4.2 Simple iterative techniques

Jacobi iteration, Gauss-Seidel iteration, and Shooting are all still possible with the symmetric

formulation. The advantages of the symmetric system, however, are more modest than for direct

solution. Storage space for the matrix of coefficients is still cut in half, but the number of opera
tions per iteration for these schemes remains the same. For the following analyses, the symmetric

radiosity equation (12) is rewritten as:

(D + S)X'=v (16)

Where: D is the diagonal matrix P'^A,

S is the symmetric matrix -AF,

X is the solution estimate to b,

V is the right-hand-side P'^Ae.

Usually, the matrix S will have some degree of sparsity caused by coplanar patches, occluded

patches, or patches facing away from one another which have zero coupling (patches which cannot

"see" one another.)

www.manaraa.com

18

2.4.2.1 Jacobi iteration

The simplest iterative scheme we consider here is the Jacobi iteration. This iteration updates
all solution variables as a batch. It can be written as follows in algorithmic form:

6 = 0, m = Sxq

do {

X = - D ' ^ m + V
m = Sx

r = m + D x - v {Residual}
) while (l|r|L>E| |Z? + SILl | i |L)

Algorithm 1: Jacobi iteration

An examination of Algorithm 1 reveals that it takes 2N^ + 4N floating-point operations per

iteration plus - 3N floating-point operations for setup. Note that in the preceding operation

counts, multiplication, addition, and subtractions is counted as one floating-point operation and

divide and square root are counted as four. It is guaranteed to converge for diagonally dominant
systems, and its convergence rate is related to the spectral radius of p(D"'S). The closer

p (D~^S) is to zero, the more quickly Jacobi iteration converges. A small p corresponds to scenes
with dark surfaces.

2.4.2.2 Gauss-Seidel iteration

Slightly more complicated is the Gauss-Seidel iteration. Instead of updating all variables as a

batch, it updates one at a time, and then uses the value just computed when updating subsequent

variables. It can be written as shown in Algorithm 2.

A = 0
do {

for i = 1 to N
a = Xi

N J * i .
" i - E

j = i
r,- = d,-(:c,-- a) {Previous resid.)

) while (l|r|L>E| |Z) + S|Lll*|L)

Algorithm 2: Gauss-Seidel iteration

Algorithm 2 is a slight variant on Gauss-Seidel that evaluates the residual from the previous
iteration. Although this different residual check will cause Algorithm 2 to proceed one too many

iterations, it cuts in half the amount of 0(N^J work. Algorithm 2 requires 2N^ + 3N floating-point

www.manaraa.com

19

operations with no setup overhead. Gauss-Seidel has a convergence rate that is related to
p((D + L)~'L^), where L is the lower triangular part of the symmetric matrix S.

2.4.2.3 Progressive radiosity (shooting)

The method of "Shooting" is a variant on the Gauss-Seidel iteration proposed by Cohen
[Cohen 88]. It progressively redistributes "unshot radiosity" through the scene according to which

patch has the greatest amount of unshot radiosity accumulated.

At each step, the patch in the scene with the greatest amount of unshot radiosity is selected.

The unshot radiosity belonging to this patch is redistributed to all other patches in the scene,

updating their solutions and unshot radiosities. This process is repeated until convergence is
reached.

An added optimization is also formulated to deal with ambient light in the scene. A constant

radiosity is added to all patch radiosities in the scene in an attempt to reduce the RMS error in

the answer at each step. The Shooting algorithm can be expressed as follows:

Algorithm 3 takes 6//^ + 3N operations per iteration. Unlike Jacobi or Gauss-Seidel, there is

no way to reuse the operations in the kernel to compute a residual. Therefore, a separate step
involving 2iV^ operations is necessary to calculate a true residual. Other convergence tests, such

as the largest unshot radiosity or the difference between two consecutive solution estimates, could
be used, but they are subject to catastrophic failure. In a highly reflective scene, the true solution

is approached slowly, and an ad hoc convergence test might terminate the iteration prematurely

while still far from the desired accuracy (even to the human eye!). Note that the human eye tends

to forgive gross global illumination errors, while emphasizing small local errors. Since Shooting

updates the solution variables in a data-dependent order, a convergence analysis is difficult.

Experimental comparison will be presented in the section titled "A Practical Comparison" on
page 21.

2.4.3 Other iterative techniques

Various schemes exist for accelerating the convergence of methods such as Gauss-Seidel, such

as symmetric successive over-relaxation (SSOR), and the Chebyshev Semi-Iterative method. Both
of these methods, however, assume that certain acceleration constants are available or comput

able at solution time. In general, the optimal values for these constants are difficult to obtain
except for certain structured problems.

As there is little structure in the general radiosity matrix, determining optimal values for the

acceleration constants is probably more expensive than a non-accelerated solution technique. This

is because it would require an eigenvalue analysis which is as difficult a problem as the solution

itself. If the values for the acceleration constants are sufficiently wrong, then, the "accelerated"

solution may proceed more slowly than the unaccelerated version. A large literature exists for

estimating the acceleration constants, but we have not chosen to pursue such an analysis. In the
next section, we will show that the method of conjugate gradients is both simple and fast, and

have concentrated our efforts there.

www.manaraa.com

20

X = V {First guess solution)

A* = V iUnshot radiosity)
N

T = (Total area)

1 = 1

1 "
pgu, = -P/^,' {Average reflectivity)

1 = 1

R = {Interreflection factor)

do {

for k = 1 to i V

Select i s.t. Ax^ is maximal

for y = 1 to N , f / j .
A r a d = { p j A X j S i j) / A j

AXj = Axj + Arad
Xj = Xj+ Arad

AXi = 0

R ^ Aambient = — ^ Ax jAj {Ambient light)
J° 1

for y = 1 to N {Improved sol'n)
nij = Xj + PjAambient

r = {D + S)m-v {Residual)
) while (l l r l L>E | | I > + S | L l l m l L)

for ; = 1 to N
Xj = Xj + PjAambient

Algorithm 3: Shooting with sorting and ambient

2.4.4 Method of conjugate gradients

An important implication of the symmetric radiosity equation is the ability to apply more
sophisticated methods to its solution, such as the method of conjugate gradients [Golub 89]. This

method was first applied to the SLALOM benchmark by Bjerstad and Boman [Bjorstad 91a].

They prove that, given bounds on the maximum reflectivity in the scene 1), the CG

solver will always be better than a direct solver as N grows large [Bjorstad 91b].

The method of conjugate gradients (CG) is not actually an iterative method, but a way of sys

tematically constraining the solution in residual space. This powerful method exploits the direc

tion in which the solution estimate changes in N-space to choose a better path toward the

solution. Furthermore, it is guaranteed to converge to the exact solution inN iterations (assuming

www.manaraa.com

21

exact arithmetic), where N is the number of unknowns. In practice, however, CG converges too
quickly to be allowed to proceed for jV iterations.

The convergence rate of the conjugate method is related to the condition number of the matrix
being iterated upon. The closer the condition number is to unity, the more quickly the method con

verges. Preconditioning is a way of accelerating the conjugate gradient method by solving a simi

lar problem whose condition number is closer to unity. We have chosen to use a simple diagonal

preconditioner with our CG algorithm.

k = 0, X = 0, r = V
do (

2 = £>-'r
T

Y, = r'z

if k = 0 then
P = 0

else

P = Y/Yo
end if

p = 2 + Pp

p ^ (D + S) p

X = x + ap

r = r-a(,D + S)p
YQ = Y,
k = k + 1

] while (l|r|L>e||D + S|Ll|ic|L)

Algorithm 4: Preconditioned conjugate gradients

Algorithm 4 takes 2N^ + 15N floating-point operations per iteration with no setup overhead.

As with Jacobi iteration, only one matrix-vector multiply is needed per iteration.

2.5 A Practical Comparison
An early version of the SLALOM benchmark has been modified in order to objectively evalu

ate the effectiveness of various solution methods. The original SLALOM benchmark solves a radi-
osity problem in a six-sided, right, rectangular box. This type of simple enclosure is sometimes

called a "Cornell box" in honor of the landmark paper [Goral 84]. Each face may have different

reflectivity and emissivity, and is subdivided into a regular grid of subpatches in order to more

accurately capture the change in light intensity across the face.

Jacobi, Gauss-Seidel, "Shooting," and Conjugate Gradient solvers are implemented, and their

results presented. The Cornell box used for this experiment is 13.5 by 9 by 8 units, with area-

weighted average reflectivities ranging from 0.372 to 0.902. Some explanation is in order here for

www.manaraa.com

22

exactly what is meant by an "iteration" with respect to Shooting. In CG, Jacobi, and Gauss-Seidel,
an iteration means an update to each variable in the system. For purposes of comparison, one

iteration of Shooting is defined to be N solution updates, whether they are different variables or
not. This gives a uniform scale of comparison for all three methods, and does not penalize the

Shooting method.

Table 1 summarizes the number of floating-point operations per iteration for each of the four

solver types implemented in terms of the number of variables, N, Every effort was made to fairly

assess each algorithm's requirements, and tune them so that no operations were wasted.

Table 1: Opcount metrics of various solvers

Solver Type Operations per Iteration

Jacobi 2N'^ + 4N

Gauss-Seidel 2N'^ + 3N

Shooting 6 N ^ + 3 N

Conjugate Gradient 2N'^+15N

Figure 2 presents the number of iterations each of the solver types required to converge for a

range of problem sizes. The convergence criterion was four decimals of relative accuracy. Great

care was taken to ensure that each solver used exactly the same convergence criteria so compari

son of iteration counts would be fair. Convergence curves for four and eight decimals of accuracy

are presented, although only the four-decimal plot is of practical interest.

50

45

40

w 35
c
o 30

m 25

Ï 2 0
" 15

1 0

5

0
0 100 200 300 400 500 600

Patches

Figure 2: Solver iteration counts

One will immediately notice from Figure 2 that the numbers of iterations of Conjugate Gradi
ent and Shooting required for four decimals of accuracy are comparable. Data from Table 1, how

ever, puts this in a different light. A small number of iterations is not the measure of goodness for

a solution technique, but rather the time it takes to solve a given system. The shooting method

SLALOM Solver Iterations vs. Patches

! '

1 " ,
1

^ * «

• —i—f—1 1
eon j;rGrad-;

Jacob!
3auss-Seidei

i
eon j;rGrad-;

Jacob!
3auss-Seidei

1

1

www.manaraa.com

23

requires three times the number of floating-point operations per iteration that conjugate gradient

does! Thus, Shooting will take about three times as long to converge as CG even if their conver

gence rates are the same. Later, it will become apparent that CG has a much faster convergence
rate than Shooting.

Total solution time for the three solvers on various problem sizes is shown in Figure 3. The CG

solver can be seen to be approximately five times faster than Shooting for this problem. Collected
in Table 2 are timing comparisons of Jacobi, Gauss-Seidel and Shooting against Conjugate Gradi

ent for a variety of geometries and average reflectivities. The problem size is 1000 patches in each

case. The results show that CG is superior to Jacobi, GS and Shooting for all configurations
tested, with its advantage becoming overwhelming with higher average reflectivity. Thus, the con

vergence rate for CG is relatively unaffected by the average reflectivity of the scene, while GS and
Shooting suffer badly with increasing reflectivity.

SLALOM Solver Time vs. Patches

14

12

1 0
Cor

8
G a u

6

4

2

0
0 100 200 300 400 500 600

Patches

Figure 3: Solver time

Table 2: Solver comparison for various geometries on 1000 patches

Geometry (Cornell Box) Average p
"^JAC

'^CG

^GS

^CG

^Shoot

^CG

0.411 1.21 1.21 3.84

10 X 10 X 10
0.617 1.75 1.63 5.05

10 X 10 X 10
0.738 3.08 2.56 10.67

0.893 6.98 5.70 20.15

0.444 : 1.32 3 44

13.5 X 9 X 8
0.659 V:1.91 -••••;:• 181 / 6.19

13.5 X 9 X 8
0.760 3.03 2.67 11.66

0.895 7.06 5.79 25.49

www.manaraa.com

24

Table 2: Solver comparison for various geometries on 1000 patches (cont'd)

CJeometry (Cornell Box) Average p ^JAC

^cc

^GS ^Shoot

^CG

2 x 2 x 1 0

0.372 1.06 1.24 1.86

2 x 2 x 1 0
0.543 1.28 1.35 2.60

2 x 2 x 1 0
0.690 2.10 1.95 5.74

2 x 2 x 1 0

0.902 5.34 4.61 16.23

Another striking observation can be made from the data in Table 2. The performance of each
solver type is exactly the opposite of that which would be implied by historical usage! Early radi-

osity papers used Jacobi iteration to solve their systems. Work then proceeded to Gauss-Seidel
iteration, and Shooting methods. Apparently, the added complexity of the more sophisticated iter

ative schemes more than offset any gains that might have been made by improved convergence

rates, thus increasing the solution time! Perhaps the choice was driven by apparent image quality
instead of analysis of the error.

It is interesting to note that the original formulation of the Shooting technique attempts to

take specific advantage of average reflectivity to compute a uniform, ambient illumination. This

ambient term is added to the solution estimate at each iteration to give an improved solution.

Even this specific optimization does not help the Shooting technique cope well with highly reflec

tive environments. Indeed, the Shooting technique seems to work best for dim scenes with low

average reflectivity—a situation where radiosity methods are not called for at all!

2.6 Applicability to Hierarchical Methods
With the advent of the hierarchical radiosity algorithm [Hanrahan 91], new areas of investi

gation are open. Hanrahan et al. promote the use of the Shooting method for solving a hierarchi

cal system. They justify this by pointing out that each patch is linked to 0(1) other patches in the

scene, and therefore a shooting step is very little work.

Although this is true, the conjugate gradient algorithm can benefit just as much from the

hierarchical nature of the problem; the matrix-vector multiply kernel of CG can be performed in

0(.N) time instead of 0{N^) time. The convergence properties of these two methods will be the

same regardless of whether the matrix is represented densely or hierarchically.

Hierarchical matrix-vector multiply takes 4 k N + 1 2 N floating-point operations, where n is

the number of leaf patches in the hierarchy, and k is the average number of links per patch. Expe

rience has shown us that k is typically about 10. Reanalyzing operation counts for Algorithm 1

through Algorithm 4 gives us Table 3,

Table 3: Operation count metrics for various hierarchical solvers

Solver TVpe Operations per Iteration

Jacobi 4 k N + 1 9 N

www.manaraa.com

25

Table 3: Operation count metrics for various hierarchical solvers

Solver Type Operations per Iteration

Shooting 8 k N + 1 5 N

Conjugate Gradient 4 k N + 2 5 N

Once again, we see CG and Jacobi tied for the least number of operations per iteration. Know

ing that the convergence rates of the various solvers are unchanged, we may conclude that CG

would once again be the method of choice.

2.7 Summary
We have shown how the diffuse radiosity problem can be reformulated in terms of a symmet

ric system of linear equations. All previous formulations of the radiosity problem have been non-
symmetric, and thus, could not benefit from decreased storage requirements, decreased memory
references, and advanced solution techniques.

The method of Conjugate Gradients has been applied to a Cornell box radiosity problem, and

its performance compared to that of the progressive radiosity Shooting technique, Gauss-Seidel

iteration, and Jacobi iteration for a variety of geometric configurations and average reflectivities.

The Conjugate Gradient technique is uniformly superior to all three other methods, with its

advantage becoming very pronounced in scenes with high average reflectivity.

www.manaraa.com

26

CHAPTER III

HIERARCHICAL METHODS

3.1 Introduction to Hierarchical Methods
A hierarchical algorithm is one which exploits a pre-specified accuracy criterion to reduce the

amount of calculation in the solution of a problem. The method will solve at multiple resolutions

to avoid excess work on coarse resolutions, and thus reduce the total amount of computational
work.

This chapter's purpose is twofold. First, the overall philosophy of hierarchical methods is

explored and discussed. Then, in order to motivate the previous discussion, five examples of hier

archical methods are discussed in modest detail. Two of these algorithms are hierarchical radios-
ity algorithms—the only two in the literature. The other three are astrophysical N-body

simulation programs.

3.2 Hierarchical iV-body Methods
Hierarchical methods, as defined here, started with an improved algorithm for calculating the

total forces acting on a set of mutually gravitating bodies or particles [Appel 85]. This type of

problem, called the N-body problem, is of intense interest in cosmology where there exist many

open questions about the state of the universe such as, "Is the universe open or closed?" lb con

duct meaningful theoretical experiments, simulations of thousands or even millions of gravitating

bodies (particles) must be modeled. A brute-force algorithm for calculating the exact force on each

particle consumes 0(.N^) time. This is because all N particles in the system interact with the other

N-1 particles in a non-trivial manner.

3.2.1 Appel's JV-body algorithm

Appel proposed a method which approximates the gravitational interaction between two par

ticles, a single particle and a distant clump of particles, or between two distant clumps of particles

[Appel 85]. By only computing the force on a particle or clump to a specified level of accuracy, and

applying this clumping recursively, the time complexity of the calculation was reduced. A proof of

this time complexity was not provided, but a conservative argument was given by Appel to sup

port a time complexity of 0(N log AO.

3.2.1.1 Bounding the interaction error

The gravitational interaction between a particle and a clump of particles can be approximated

by regarding the clump of particles as a single point mass. This is called the monopole approxima

tion. Consider the arrangement shown in Figure 4. Two point masses and are shown

together with an "observing" particle, o. The two point masses are no further than \dr\ from their
center of mass, c. The acceleration on the observing particle o may be written as

www.manaraa.com

27

Observing
particle d r , dr

dr,

Figure 4: Monopole approximation

Theorem: The monopole approximation, (17), correctly estimates the force on a single observing

particle due to two other particles to within 0(|c(r|^).

| r + d r j ® j r + d r g l ^ | r | ^

Proof: The center-of-mass of the system in Figure 4 satisfies,

m , r f r , + m 2 d r 2 = 0 . (1 8)

We will use the vector form of Taylor's formula,

/•(afo + f e) = /"(aro)+/t • V/"(arg)+0(l /i|^) , (19)

in the sequel. First, we form the Taylor series expansion,

We now use (20) to expand the middle term of (17),

a rn^r 3m^r(dr^-r) m^dr^ Zm^dr(,dr^ • r)
+ 0(|dri|2)

+ T 7 3 - ' ' ' + o (W) . (2 1)

G Irl" Irl® Irl" |r|®

mor (dr, - r) m^dr^ Smodridr^-r) '2' ""'2' I '"2"-'2 "'"2"' '' , ,2\
|r|^ |r|® |r|® |r|'

By (18), we may eliminate terms 3 and 8 from (21). Terms 2 and 7 may also be eliminated using
(18). Also, terms 4 and 9 are of 0 (Idrl^), therefore,

www.manaraa.com

28

G (m i + m 2) r
+ 0(|dr|2) I

Thus, the monopole approximation can be used to approximate the acceleration on a particle due

to a clump to within order \dr\^. Similarly, the acceleration on eveiy particle in a clump due to
another clump may be approximated to within order (|dr|/|r^,.^|)^, where is the minimum

distance between the two clumps.

3.2.1.2 The algorithm

The first step in executing Appel's fast N-body algorithm is to construct a binary k-d tree

above the N given particles. This has the effect of spatially clumping nearby particles into adja

cent subtrees. Interior nodes are tagged with the center of mass for all particles in the subtree.

Interior nodes also contain the radius of a sphere which will enclose all particles in the subtree.
Thus, clump-to-clump interactions are equivalent to applying the monopole approximation

between two interior nodes in the tree. Appel gives the following algorithm for computing the

acceleration on all particles in the system.

Algorithm 5 traverses the hierarchy of particle clumps, and evaluates acceleration contribu

tions at the first place where the error criterion is satisfied. Note that if S is set to zero, the TwoN-

ode procedure recurs all the way down to the leaf level, and calculates all interactions. If S is

sufficiently greater than zero, then recursion will terminate before reaching the leaf level, and cal

culations will be saved. The approximation made at this higher level will be accurate to a relative

accuracy of 0(6).

3.2.1.3 Analysis of time complexity

Suppose a particle X is surrounded with a series of spherical shells as shown in Figure 5. A

shell of inside radius r is defined to have a thickness of ô • r. Consider one of these shells of radius

r and thickness 5 • r. The shell is filled with clumps of diameter S • r. All these clumps satisfy the

error criterion set forth above. The number of such clumps that may be placed in the shell is

r (l + 5) 3 r

Figure 5: Shell structure about X

www.manaraa.com

29

{ Compute all acceleration contributions for)
{ all nodes in the tree rooted at clump B.)
ComputeAccel(B)
{

if B is a nontrivial clump |
ComputeAccel

ComputeAccel {Bright)

T w o N o d e O i e f t r B r i g h t)
)

I

(Compute the gravitational interaction between)
I clumps A and B. If A and B do not satisfy the)
I error criterion, proceed further down tree.)
TwoNode(A, B)
(

d = vector from A to B
d = magnitude of d
dr;̂ = diameter of sphere around clump A

drg = diameter of sphere around clump B

if (dr^/d > 5) and (dr^ > drg) t

TwoNode (A^eft/ B)

TwoNode (Aright/ B)

I

else if (drg/d > Ô) (

TwoNode(A, Bjeft)

TwoNode (A, Bright)

1
else {

Accft = Accft + Gmgd/d^
Accg = Accg - Gm^d/d^

)

)

Algorithm 5: Computing accelerations hierarchically

This follows by projecting the clumps' silhouettes onto the surface of the shell. The shells about X
are arranged so that the expected number of particles inside the smallest sphere is 1, and the

expected number of particles inside the largest sphere isN, the number of particles in the system.

The radius of the smallest sphere is defined to be r. Therefore, the radius of the largest sphere

will be r (1 + S) * for some k e I. Assuming a uniform distribution of particles through space, the

expected number of particles that a given sphere will enclose is directly proportional to its vol

ume. Therefore, the ratio of the radii of the largest and smallest spheres will be

www.manaraa.com

30

'"largest 471 J

4n J ,

1/3

= (^)''^ = (23)

This ratio of radii may be derived another way by using the sizes of the shells:

= (1 + 5)*. (24)
''bribUCSI '*

Equating the right hand sides of (23) and (24), we obtain the following:

= (1 + 6) *

|logN = Élog(l + S)

k = logN (25)
31og(l + ô)

the number of shells. Next, the number of floating-point operations (flops) necessary to update
particle X is proportional to the number of shells times the number of clumps per shell times the
number of flops for one clump, which is (25) times (22):

flops _ logTV 4 _ 4logN
update Slog(1 + 6) gz 36^1og(l + 8) '

Note that the number of clumps per shell in (22) is independent of the radius of the shell. Finally,

all N particles in the system must be updated in accordance with (26), so the total number of oper

ations necessary to update all particles in the system is bounded from above by,

assuming a constant 6, the measure of precision.

The complexity bound given in (27) is conservative because in reality, Appel's algorithm does

not evaluate the acceleration on all particles one at a time. Rather, there are clump-to-clump
interactions which take the place of many particle-to-clump interactions (refer to Algorithm 5).

A less conservative argument would involve analyzing the update of all N particles at once,

not just one at a time. Consider all the interactions computed in Algorithm 5. An interaction is

computed between two clumps only when the ratio dr/r is of order 6. If the ratio were larger, fur

ther recursion would have taken place in the TwoNode procedure, and two or more interactions

with smaller ratios would have been computed. The ratio will never be smaller than 0(6) because

the interaction would have been computed at a higher level, with a correspondingly larger ratio of

dr/r. Thus, by (22), there are a constant number of interactions between a given clump, and

clumps of the same size. Stated another way, there are a constant number of links to other clumps

or particles at every node in the hierarchy. The total number of nodes in a binary tree of N parti-

www.manaraa.com

31

des is 2A^- 1. Therefore, the total amount of computation involved in updating all particles is
k (27V- 1), or 0{N). It is startling that this argument was not given in either [Appel 85] or [Bar

nes 86]. It appears Appel was first to discover the 0{N) method, but was not so credited because

his proof was conservative. Greengard later proved 0{N) behavior for a slightly different

approach.

3.2.2 Barnes and Hut's N-body algorithm

A variation on Appel's algorithm uses a spatial octree, rather than Appel's k-d tree, to parti

tion particles into clumps [Barnes 86]. This less flexible spatial partitioning has the benefit of sim
plicity, and allows a more rigorous error analysis. Again, an argument is given to support a time

complexity of 0{N log N).

3.2.3 Greengard's fast multipole algorithm

By further examining this strategy, Greengard and Rokhlin [Greengard 87, Greengard 88]

lowered the time complexity of the N-body problem to 0{N). Although their error analysis and

theoretical development is mostly concerned with potential fields, the underlying methodology
transfers readily to other application areas.

Greengard has one major discovery set forth in his dissertation. He develops the theory of

multipole expansions for potential fields. This discovery allows a preset error criterion to dictate
how accurately to approximate the interaction between two clusters of particles. The algorithms

of Appel and Barnes obtain higher accuracy by restricting which clumps may interact with one

another. Greengard's algorithm, on the other hand, maintains a fixed rule for which clumps may

interact, but uses the so-called multipole expansion to approximate the interactions to the desired
precision.

Instead of dealing directly with accelerations or forces, Greengard instead chooses to approxi

mate the potential, rather than the force field. Potential is a scalar field whose value at any point

in space is the relative potential energy elicited by all other masses in the system. The gradient of

the potential field is a vector field called the force (or acceleration) field. Its direction at any point

in space points in the direction of steepest decrease in the potential field. Mathematically, this is
expressed as follows:

F { X) =-V <b{x) , (28)

where: F (x) is the vector force field at point *, and

<I>(a;) is the potential at point x.

For problems in two dimensions, the potential at point x due to a unit mass or charge at point XQ

is given by,

4)^^ (ar) = -log (|x - *o|). (29)

Substituting (29) into (28), we have the expression for the gravitational force field in two dimen

sions,

www.manaraa.com

32

For problems in three dimensions, the potential for a unit mass is given by,

= lî^-

Substituting (31) into (28), we have the expression for the gravitational force field in three dimen

sions,

which gives us the familiar inverse square relationship between gravitational force, and distance
between the masses of interest. For purposes of illustration, we shall use the two-dimensional

potential function in the following analyses, which are due to Greengard and Rokhlin. Also, for
ease of expression, we shall represent the two-dimensional vector x = xà^+yày as the complex
number z = x + iy. This way, we may take logs of z directly without the inconvenience of using

vector magnitude notation.

3.2.3.1 Bounding the interaction error

From the theory of logarithms, we have the identity

log(z-2o) = log(2)+log(l-j) , (33)

and the series expansion

l o g (l - u ;) = | w | < l . (3 4)

We substitute (33) and (34) into (31) to obtain

4) ^ ^ (z) =] o g (z) - ̂ l (^) . (3 5)
k = 1

Now, if we suppose that there are particles of mass {m,-, l<iSn} located at points

{Z(, 1Si <n} , with <r, then for any z>r, we may perform the following derivation for the
global potential field.

*(z) = =]^m/log(z) -]^1(5))

" " m, 2, *
=] o g (z) % m , _ 2 ; [: ^ (^)

www.manaraa.com

33

= l o g (z) % m , + % ^ % .
1 = 1 * = 1 i= 1

Ok
.*

where:

= Aflog(z) + ^
* = 1*

n

M = and
1 = 1

n

: = 1

V -mf,

(36)

(37)

(38)

Equation (36) is called the multipole expansion of the potential field due to n particles. M is sim
ply the total mass in the system, and the are the multipole expansion coefficients. Now, we may

approximate the potential by truncating the infinite series to p terms where p S 1:

(t)(z) = Mlogz + ^ (39)
Af = 1 *

In order to derive the error bound, we begin by rearranging (36) in the following way:

(t) (2) -Mlogz- ^
k = 1

V» "A
L jk

* = p + i ^
(40)

From (38) and (40), we may obtain the following inequalities bounding the error:

V ^
A =p + 1'

<M
* =p + , & i z r

<M
A = p + 1

M

1 -

p + i
= ((41)

where c =

Thus, for points sufficiently far away from the particles at z, , the p-term multipole expansion

has a simple error bound dependent upon the geometric relationship between the set of particles

and the point at which the potential is evaluated, and the number of terms in the multipole

expansion. Note that there are now two parameters that affect the error bound: c and p. c is the

ratio of the separation between the particle cluster and the observing point to the cluster size, p

controls the amount of work spent evaluating the multipole expansion.

Greengard fixes c at 2, and selects p to obtain the desired accuracy. Note by this method, it is

relatively easy to prove that the time complexity of the fast multipole algorithm is 0(N). Appel

uses a monopole approximation, which is equivalent to fixingp at 1. Thus, Appel's algorithm must

use larger separation ratios a between clumps to maintain a constant error. A critical observation

about these two approaches may now be made. In (41), we may observe that increasing the num-

www.manaraa.com

34

ber of multipole expansion coefficients by one will reduce the error in the approximation by a fac
tor of two. Tb achieve the same reduction in error by only evaluating clumps that are farther

apart, one must double the distance between clumps. This has the effect of decreasing the number

of interactions that may be approximated to within the error bound, and forcing more of the ele

mentary particle-to-particle interactions to be computed.

It is clear that using more terms in a multipole approximation will increase the computational

work required to evaluate the potential field by a constant factor. Increasing the minimum dis

tance between clumps in Appel's algorithm will force the refinement of a constant number of

interactions, and thus also increase the computational work by a constant factor. Just which con
stant factor is smaller will be implementation-dependent.

3.2.3.2 The algorithm

Greengard proposes two versions of his algorithm: one that uses a uniform spatial subdivi
sion, and one that uses an adaptive spatial subdivision. A uniform spatial subdivision is appropri

ate for systems with a uniform spatial distribution of particles. An adaptive spatial subdivision is
appropriate for systems with localized clumps of particles. For purposes of simplicity, we shall

consider only the uniform spatial subdivision version here.

Before giving the fast multipole algorithm, several terms must be defined. First, we define the

computational box hierarchy. Consider a square box which contains all of the particles in our sim

ulation. This box will form the root of the box hierarchy (level 0). We now divide the root box into

four equal sized boxes to form level 1 of the box hierarchy. By recursively applying this subdivi

sion, we form a hierarchy of boxes that become smaller as we proceed down the hierarchy. Subdi

vision continues until the smallest boxes (the ones at the leaf level) each contain fewer than a pre-
specified number of particles.

In order to satisfy the error bound in (41) sufficient separation must exist between computa

tional boxes if the multipole expansion is to converge properly. With c = 2, a sufficient condition

for satisfying the error bound is that interactions only be computed between computational boxes

at the same level, and that the two interacting boxes not be neighbors. Figure 6 illustrates a four-

level hierarchy. A box at the leaf level is labeled as box j. All boxes in fs interaction list are

shaded. Note that the eight boxes immediately touching boxy are not part of the interaction list

because they are too close for the multipole expansion to be valid. Potential interactions between

particles inj and particles in these eight boxes must be calculated directly. Interactions between j

and boxes outside the interaction list are not considered because they can be handled at a higher

(coarser) level in the hierarchy.

Finally, there is a subtle difference between a multipole expansion and a/oca/ expansion. Note

that the multipole expansion in (36) is only valid outside a certain radius, r, about the center of

the expansion. If we replace Z in (36) with z-ZQ, where ZQ is the center of the multipole expan

sion, we may expand in a Taylor series to obtain ([) (z), the multipole expansion about the origin,

rather than z^. Thus, we are able to translate the center of a multipole expansion. This transla

tion comes at a price, however. The original multipole expansion about ZQ is valid for all points

www.manaraa.com

35

Level 0

Level 1

Level 2

Level 3

j's interaction list

Figure 6; Interaction list of a computational box

lying outside a circle of radius r, centered about ZQ. The shifted expansion is valid for all points

lying outside a circle of radius |2o| + r, centered about the origin. Thus, in translating the center of

a multipole expansion, we greatly expand the region in which it will not converge. For a detailed

description of why this is so, the reader is referred to [Greengard 88 pp. 9-10]. In order to make

the fast multipole algorithm work, a method is needed to move the center of a multipole expansion

without incurring this convergence penalty. The solution is called a local expansion. If we expand

(36) in a MacLaurin series, we obtain

* (z) = ^ b i z ' , (4 2)
1 = 0

» J

where; = aolog(-ZQ) + (-1)*,
k = 1 ^ 0

"0 ^0 A = 1 ^0

www.manaraa.com

36

are the binomial coefficients.
k J

If the multipole expansion upon which (42) is based converges outside a circle of radius JÎ cen

tered at ZQ, then the local expansion in (42) converges inside a circle of radiuscentered at the

origin iff \zq\ >2R. An error bound for the conversion of a multipole expansion into a local expan

sion exists, and is similar in nature to (41). For a detailed derivation of this error bound, the
reader is referred to [Greengard 88], pages 12 and 13.

The local expansion gives us a way of adding up the contributions from multiple well-sepa-

rated multipole expansions about a central point. This is possible because all of the local expan

sions will converge in an area of analyticity near the origin, whereas, no shifted multipole

expansions would converge near the origin. For purposes of clarity, Greengard's fast multipole

algorithm is presented in Algorithm 6 as a series of high-level steps rather than in algorithmic

notation.

3.2.3.3 Analysis of time complexity

As a basis for analyzing the time complexity of the fast multipole algorithm, we will first ana

lyze how the potential interaction may be computed between two clumps of particles. Figure 7

Figure 7: Interaction between two clumps of particles

shows two clumps of particles centered at Xq and y^. In each case, all particles in a clump lie

inside a circle of radius R of the center of the clump. In order to calculate the effect of all particles

yj due to all particles we could simply calculate

m

4) (){/) = % «t»,. (:>;) (43)
1 = 1 '

for each the n particles yj. This clearly requires Oimn) work. Instead, suppose we form a p-term

multipole expansion of the gravitational potential due to m masses at requiring 0(m) work. We

may then evaluate the multipole expansion at each of the n points yj, requiring 0(.n) work. Thus,

by using the multipole expansion, and settling for a bounded error in a potential interaction, the

work may be reduced from 0(mn) to 0(m)+0(n). But how may interactions are there? It is obvious

www.manaraa.com

37

1. For each box j at the leaf level of the hierarchy, do the following: Form the
multipole expansion of the potential field due to all particles in box^ about

the box center of boxy.

2. Work up the hierarchy, from the level above the leaves towards the root,

and do the following for each box, j: Form the multipole expansion about

the center of box j by shifting the center of/s child's expansions. Add all

these shifted multipole expansions together to form the composite multi-

pole expansion for box

3. Work down the hierarchy, from the root towards the leaves, and do the fol
lowing for each box, 7: Form local expansions about the center of boxy due

to the composite multipole expansions of all boxes in fs interaction list.

Accumulate these local expansions into a composite local expansion for box

J. If J is not a leaf box, then shift the composite local expansion to the center
of each of fs children, and propagate it down to them. After this step is

complete, the local expansions at the leaf level are available to evaluate the
potential due to all particles other than those in boxy and its nearest neigh

bors.

4. For each boxy in the leaf level, do the following: Evaluate the composite

local expansion at each particle position to obtain the potential due to all

distant particles. Store these potentials into each particle's aggregate

potential.

5. For each box y in the leaf level, do the following: Evaluate the potential
directly due to all other particles in boxy, and/s nearest neighbors. Accu

mulate these potentials into each particle's aggregate potential.

Algorithm 6: Greengard's fast multipole algorithm

from Figure 6 that each box at each level in the hierarchy has a constant number of interactions
with other boxes. Thus, there are OiN) interactions to be computed. Since multipole and local

expansions can be formed, translated, and accumulated in constant time, the total amount of

work required to execute Algorithm 6 is 0(N).

3.3 Hierarchical Radiosity Methods
The hierarchical method was first applied to radiosity by Hanrahan et. al. [Hanrahan 91]. In

this algorithm, the coupling between clumps of patches (but not initial polygons) is approximated

to within a constant error estimate. There is the added complication that the coupling between

single patches is analytically unwieldy, and must therefore be approximated. Furthermore, no

www.manaraa.com

reasonable hard bound yet exists for the error in the coupling approximations, so it, too, must be
approximated.

In stellar dynamics codes, physicists have the luxury of being able to accurately model parti
cles as point masses. In the radiosity milieu, patches cannot be modeled as point areas due to

their extremely close relative proximity. In summary, the differences between the AT-body problem

and the hierarchical radiosity problem are as follows:

1. The solution to an iV-body problem is the final position and velocities of the particles, or how

the particles move. Particle forces and positions are alternately updated until the desired

span of time has been simulated. The solution to a radiosity problem is an approximation to

the continuous brightness across the surfaces in the scene. Patches never move; instead, they

are refined into smaller patches which will better approximate the brightness gradient

across a surface. Particles in an TV-body problem are indivisible units.

2. Patches cannot be modeled as point areas in the same way that particles can be modeled as

point masses. In the realm of TV-body problems, the relative separation between particles is
very large. It therefore suffices to represent a particle as a point mass. Given a point mass

representation, it is trivial to compute the exact gravitational interaction between two parti

cles. In a radiosity environment, closed systems or rooms are always modeled. Thus, there

will always be patches which are adjacent to one another. The ratio of their separation to

their size will not be large, and thus, a coupling estimate based on point areas will be grossly

in error.

3.3.1 Patch couplings and link splitting

Exact couplings can be determined for simple arrangements of patches. Usually, these "sim

ple" arrangements are in terms of axis-aligned rectangles or disks [Sparrow 85, Siegel 81]. Meth

ods exist for approximating the coupling between surface patches which do not fit one of these

nice arrangements [Goral 84, Cohen 85, Hanrahan 90, Smits 91]. These methods, however, are

plagued by a number of drawbacks. The hemi-cube approximation proposed by Cohen, et. al,

[Cohen 85] requires a very large amount of work to form its coupling estimate relative to other

methods. The other methods are much quicker, but are prone to gross error if the patches are

close to one another, or if the support plane of one patch splits the other patch. Also, no tight

bound on the error in any of these coupling approximations exists.

At this point, it becomes clear that there are many different sources of error in the hierarchi

cal radiosity problem. There is coupling estimate error caused by the inexact nature of the equa

tions used to approximate the coupling between patches. There is solution error caused by the
inexact (iterative) numerical solution of the linear system of light transport equations. There is

spatial discretization error brought about by approximating the continuous radiosity solution

with a set of constant-intensity patches (These topics will be covered in more detail in the section

titled "Alternation of error types" on page 46). In the TV-body problem, there are only two sources

of error: interaction error between clumps of particles, and temporal discretization error caused by

the discrete time stepping nature of the algorithm.

www.manaraa.com

39

The method of hierarchical radiosity has a general form similar to that shown in Algorithm 7.
The major differences between the two previously existing hierarchical radiosity methods lie

mainly in how they define the error in a link, and the error in the solution. In neither case are link
and solution error in commensurate units

Read in the scene description
Create initial link or links
Initialize brightness of each patch
While the error in the solution is too large

Refine some links, doing those with the largest error first
Solve for new patch brightnesses

End while
Write the final patch geometries and brightnesses

A point in Algorithm 7 needs to be further elucidated. Just what "refining a link" means has
not been defined. We do so now. In Algorithm 5 on page 29, we see that if an interaction does not

meet the error criterion, then the procedure TwoNode recurs, and examines two interactions with

subclumps. This replacement of one interaction with two interactions at a finer level of resolution

is what is meant by link refinement. But what if a link is already at the leaf level in the hierarchy?
In the N-body problem, such an interaction cannot be further refined because a particle is indivis

ible. In the radiosity setting, we may subdivide the patch into two daughter patches. Patches may

always be subdivided if necessary, and new nodes added to the bottom of the hierarchy.

Algorithm 7: Hierarchical radiosity

Hierarchical structure

Physical
structure

Figure 8: Physical and hierarchical interpretation

www.manaraa.com

40

Figure 8 is a depiction of the subdivision and coupling of two patches together with its hierar
chical representation. Note that patch 1 has been split down the middle to form two subpatches, 3

and 4. Patch 2 has been similarly split into patches 5 and 6. Figure 9 shows the link refinement

steps which led to the arrangement shown in Figure 8. The refinement process begins with a sin

gle link from the hierarchy root node to itself. Since this link is a self-link, it is refined into three

l i n k s : C ^ , C j j , a n d S i n c e b o t h p a t c h e s 1 a n d 2 a r e f l a t a n d c a n h a v e n o s e l f - c o u p l i n g , C j i

and C22 are 0 and we see only the Cjj coupling in step 2. The Cjg coupling is then refined into

Cg2 and C42, and finally C32 into C^g and Cgg.

Step 2
Step 1

Node

Node

Node Node

Step 3

Node

Node

Node Node

Step 4

Node

Node Node

Node Node Node Node

Figure 9: Link refinement steps preceding Figure 8

NodeA C j, /Node
, 1 J 2 ,

Node\ I Node \ (Node\ (Node
. 3 \ 4 J r \ G y V 6 , V._X ^37 —y —y

www.manaraa.com

41

For the following derivation, we shall use form factors rather than coupling factors. Recall
that is the fraction of power (or power per unit area) leaving patch q and arriving at patch p.

Thus, if Xg denotes power per unit area (this quantity is called irradiance) being emitted by patch

Ç, then FpgXg is the amount of power per unit area emitted by q that impinges on p. From a phys

ical standpoint, we may calculate the total irradiance of any patch p by summing for all Fp^

at all nodes above, on, and below node p in the hierarchy.

We will now derive rules for splitting a link on the left. Consider patch p where p has

daughters I and r. The expression for the total irradiance arriving atp is

''p = •P'M*, + «/ + «r + P' (44)

where Cp^ is the link to be split, a, is the contribution from all links at or below patch I to the

irradiance of patch I; is the contribution from all links at or below patch r to the irradiance of
patch r; and P is the contribution from all links at or above patch p, except for link Cp^, to the
irradiance of patch p. The expressions for the total irradiance arriving at I and r are:

+ + (45)

Now, suppose we replace link Cp^ with the two links and Let us now rewrite (44) and

(45) in light of this link splitting. The expression for the irradiance at p now becomes

+ a, + + p. (46)

The expressions for the irradiances of patches I and r become

bi = + + p

6, = f„%, + a, + P. (47)

Thus, splitting a link on the left affects only the expressions for the irradiance of patches p, I, and

r. Such a splitting will presumably yield a more accurate irradiance for patches I and r.

Now, suppose we wish to split link Cp^ on the right. Again, we will consider patch p, but this

time patch q will have daughters I and r. The expression for the total irradiance arriving atp is:

= f'pgZq + a + P, (48)

where Cp^ is the link to be split, a is the contribution from all links below patch p to the irradi

ance of patch p; and P is the contribution from all links at or above patch p, except for link Cp^, to

the irradiance of patch p. Now, suppose we replace link with the two links Cpi and The

expression for the irradiance of patch p now becomes

= FpiXi + + a + p. (49)

Thus, splitting a link on the right affects only the expression for the irradiance of patch p.

www.manaraa.com

42

An important addition to the above splitting will be discussed in the section titled "Unidirec
tional vs. bidirectional links" on page 56. In that section, splitting the link on the left implies
a splitting of C^p on the right, and vice versa.

3.8.2 Ham-ahan's method

Hanrahan, et. al, choose to approximate the form factor from one patch to another using a

point-to-disk coupling estimate. In this method, the form factor from a patch /? to a patch q is
approximated by the following formula:

Actually, (50) is derived from the equation for the form factor between a differential area and a

disk, not two areas. Hanrahan argues that the differential area to area form factor will be a good

estimate of the true form factor as the separation between the area increases. Furthermore, the

magnitude of (50) is a good estimate of the error in the form factor itself.

When determining the coupling between two patches, one must be cognizant of the possibility
that another patch lies between them. Thus, a visibility test must be performed to see if the

patches of interest are obscured with respect to one another. Hanrahan's method fires a fixed

number of test rays between the two patches and notes how many are blocked by another patch.

The estimated form factor between the patches is then attenuated by the fraction of rays which
were obscured. If all rays are obscured, then the candidate link is thrown out completely because

no light can be propagated between the two patches. This strategy has serious flaws which are

discussed at length in the section titled "Airtight occlusion testing" on page 52.

Hanrahan proposes that a better measure of the error in a link is the amount of energy that it

propagates, rather than just the form factor between the two patches. The reasoning behind this

assertion is that links between dark patches don't matter because there is little light there to

transport in the first place. This alternative criterion for refining links is called "BF refinement"
because link error is calculated by multiplying patch Brightness by link Form factor. From a

physical point of view, BF refinement asserts that a correct radiosity solution minimizes the error

in the total amount of energy being transported in the scene.

The link refinement process is driven by a decreasing (BF)^ criterion. A value for (BF)^ is

chosen, and links are refined to this precision, The system is then solved, iBF)^. lowered, and the

process repeated. No specifics are given regarding how (BF) ̂ is chosen initially or changed dur

ing the course of the algorithm.

(50)

where is the radius of the disk at q,

is the distance from the center ofp to the center of q,

0] is the angle between Rp^ and the normal to patch p, and

8g is the angle between Rp^ and the normal to patch q.

www.manaraa.com

43

Next, there is the subject of solving for patch radiosities. The method in question essentially
uses the Jacobi iteration, which was discussed in the section titled "Jacobi iteration" on page 18.

The convergence test, however, is not specified in the published work. From this omission, we

must assume that little attention was paid to the relationship between the error estimates for

links, and the degree of accuracy to which it appropriate to solve for patch radiosities. This rela

tionship is discussed at length in the section titled "Alternation of error types" on page 46.

Since form factor estimates are not approximated to within a preset error tolerance, Hanrah-

an's algorithm is not driven by an a priori error criterion like Appel's and Greengard's algorithms;

rather, it produces a bound on the error as a result of subdivision. This is not necessarily bad, but
its appropriateness depends upon the application to which it is applied.

3^.3 Smits' method

The hierarchical radiosity method proposed by Smits, Arvo, and Salesin [Smits 91] is an

extension to that of Hanrahan, et. al. Its major contribution is the introduction of importance into
the link refinement process. Until Smits' importance-driven radiosity algorithm, a radiosity solu

tion was view independent', that is, the solution for patch brightnesses and the link refinement

process did not depend on from where the scene was viewed. Once the system was solved, it could

be viewed from any location in space with equal fidelity. Smits argues that in a scene containing

many objects which are not directly viewed, a solution may be reached much more quickly if a

viewing point and viewing direction are specified. In other words, patch radiosities are calculated

to a high accuracy only for the surfaces which are directly visible to the viewer, or contribute sig
nificantly to their illumination.

In order to determine which patches in a scene are "important," a transport equation is solved

which is dual to the light transport itself. Whereas the light sources in a scene emit light, the

viewpoint emits importance. Thus, two simultaneous transport systems are solved: the usual

radiosity transport of light from light emitting patches toward the viewer, and the transport of

importance from the viewer toward the light sources.

The definition of link error is modified so that only links between bright and important

patches are refined rather than just links between bright patches. Smits further modified the def

inition of link error in two ways which are coincident with this research. The first way has to do

with taking into account the reflectivity of the patches at either end of a link. Details are dis

cussed in the section titled "Flaw in area/form factor threshold reasoning" on page 55. The second

modification has to do with the way coupling error is estimated between two patches. Recall that

Hanrahan used the magnitude of the form factor between two patches in his estimate of the error

in the coupling. Smits proposes taking several estimate samples across the surface of each patch.

These samples are averaged together to form the actual coupling estimate, and their ran^e is used

as an estimate of the error in the coupling estimate. More discussion is given in the section titled

"Coupling estimates" on page 57.

Exactly like Hanrahan's algorithm, Smits' link refinement process is driven by a decreasing

criterion. A value for {BF) ̂ is chosen, and links are refined to this precision. The system

www.manaraa.com

44

is then solved, (BF)^ lowered, and the process repeated. No specifics are given regarding how
(BF) g is chosen initially or changed during the course of the algorithm.

3.4 Problems Amenable to Hierarchical Methods
At this point, we have enough data to make some preliminary observations about what kinds

of physical problems are amenable to solution with hierarchical methods. First, we borrow a char
acterization of potential problems from [Greengard 88]:

where ^ncor ® very localized potential which decays rapidly with dis
tance,

'^external extemally imposed potential and is independent of the
number or size of particles in the system, and
is a far-field potential for which contributions from all parti
cles in the system are significant.

The term is too localized to benefit from hierarchical methods, and ^f^temai indepen
dent of the number and size of particles in the system. It is the far-field potential term,

which is of interest because of its dependence on all particles in the system. In a 3D potential sys
tem, the far-field interaction falls off as the square of the distance between interacting particles.

Analogously, the light intensity emitted from a patch falls off as the square of the distance from

the patch. This decreasing interaction with distance is precisely the property which allows us to

cluster particles and patches together, and estimate interactions between them to a specified level

of accuracy.

In order for a hierarchical method to be useful, it must be faster than existing methods. In the

case of a highly clustered TV-body problem, hierarchical methods have reduced the time complex

ity of the problem from 0(N^) to 0(.N) for a given level of accuracy. In the case of the radiosity

problem, hierarchical methods have reduced the time complexity of the problem from 0{N^) to

0(AO for a given level of accuracy.

More generally, a problem must obey the principle of superposition (or at least have a bounded

error for a superposition) for present hierarchical methods to be applicable. Furthermore, the sys

tem must be stable so that a small error made solving the system of equations implied by the

interactions does not produce a disastrously wrong final answer.

www.manaraa.com

45

CHAPTER IV

HIERARCHICAL RADIOSITY ENHANCEMENTS

4.1 Introduction
The new hierarchical radiosity method has provided a great leap in performance for radiosity

renderings. In its original form, however, several serious issues were left unresolved. We present

several major improvements to the hierarchical radiosity algorithm. Among them are: a better
accounting of the error in link estimates; a mathematically sound basis for trading off solver error

against link error; improved occlusion testing which does not involve ray tracing; and a novel self-

consistency check called "rowsum correction" that removes many of the image artifacts associated

with hierarchical radiosity.

The method of hierarchical radiosity [Hanrahan 91, Smits 92] has provided a powerful new

framework in which to solve the radiosity problem. Form factors are now approximated to only

the accuracy demanded by the calculation. Clustering has reduced the complexity of radiosity

from O(n^) to 0{n). BP refinement adaptively subdivides polygons only where the error in trans

ported energy becomes too large. Hemi-cubes are replaced by simple coupling estimates and a

realization that inaccuracy in the coupling estimate is acceptable so long as it is reducible with

patch refinement.

Several drawbacks and deficiencies still exist, however. Error in link estimates and error in

system solution are not handled in a consistent fashion. Artifacts caused by the method of esti
mating coupling factors exist, and have not been acknowledged or mitigated. Currently, no

method for clustering initial polygons exists for purposes of creating fewer than initial links,

where n is the number of initial polygons. Also, ray tracing is currently used to determine

whether two patches are visible with respect to one another. This method is prone to catastrophic
error, is very costly, and does not obey a consistent error criterion. If enough rays are cast to make

this method consistent with an error criterion, it completely dominates the execution time.

We address these problems, and put forth techniques and suggestions for dealing with them.

Error consistency is supplied by defining solution error, link error, and discretization error in

terms of power, and alternating between refining and solving to a matching accuracy tolerance. A

type of artifact, dubbed the "tartan" artifact, is shown to exist in all hierarchical renderings. A
self-consistency correction factor is applied to operations involving the hierarchical matrix-vector

multiply, and is shown to deal effectively with the tartan artifact.

A method is proposed for building a hierarchy above the initial polygons so a single unified

data structure is seen by the link refinement algorithm, rather than a forest of hierarchies. A

method for estimating the coupling between groups of polygons is also presented. This gives the

www.manaraa.com

46

algorithm the unique ability to start with a single link from the hierarchy root node to itself, and
refine it into as many links as are needed.

A method of classifying the state of occlusion between two polygons with respect to a single

third polygon is presented. This new method classifies the visibility between the two test polygons

as either totally visible, partially visible, or totally occluded, and does not have a catastrophic fail

ure mode like the ray tracing method.

Some terms related to the hierarchical radiosity method are defined here. As the subdiscipline

is very young, the terminology is not widely used.

The hierarchical radiosity method takes as input, a set of initial polygons. Interactions or

links are formed between the initial polygons, representing all possible light transport paths. A
link consists of a coupling factor estimate, an estimate of the coupling factor error, references to

the two patches between which the link is transporting light, and the visibility of the two patches.

Visibility is an indication of how much of each patch is visible from the other patch. Once the ini
tial links are set up, the links are placed into a priority queue which is keyed to their link errors.

We call this priority queue of links the link heap. Links are then refined by taking the link with

the largest error from the link heap, and splitting one of the patches it couples. Usually, the larger
patch will be split or subdivided. The link is discarded, and two (or more, depending on how many

subpatches are created during subdivision) new links are created between the newly created sub-
patches and the original patch that was not split. New couplings, coupling errors, and visibilities

are determined. These new links are placed back into the link heap.

As subdivision proceeds, a hierarchy of subpatches is created below the initial polygons. As

refinement proceeds, link error is smoothly reduced. Periodically, a solution pass is made to

update patch radiosities.

In the following sections, we will discuss some weaknesses in the existing hierarchical radios

ity method, and propose enhancements that strengthen the method.

4.3.1 Alternation of error types

The diffuse radiosity equation has several types of error that may be present in a computed

solution. The integral form of the diffuse radiosity equation is:

4.2 Background and Definitions

4.3 Discussion

(52)

where b (x) is the radiosity at point x ,

e (x) i s t h e e m i t t a n c e a t p o i n t x ,

p(z) is the reflectivity at point *,

g (%, x') is the visibility between * and x', and

f{x,x') is the differential form factor between x and x'.

www.manaraa.com

47

Equation (52) is typically discretized into a form such as equation (53). The rough loci of four
sources of error are pointed out below. A fifth source of error, machine representation error, exists

but is not localized.

1. Numerical error in the computed solution. This is caused by an inexact numerical solution to
the system of linear equations. It is measured in units of power per unit area (typically

watts/meter^). We measure it in terms of the residual.

2. Error in modeling patch emittance and reflectance. These quantities are generally assumed
to be exact for purposes of computer graphics.

3. Discretization error. This is a measure of how well the patches we have selected approximate

the underlying continuous solution to (52) in a piecewise constant manner.

4. Patch coupling error. Error here arises from the approximation of the coupling factor

between two patches.

5. Machine precision. A computer can represent real numbers to only a finite degree of preci

sion. Fortunately, 32-bit floating-point representation is usually more than adequate for pur
poses of radiosity calculations.

As we attempt to solve the radiosity equation, there is no reason to waste time minimizing
only one or two of these sources of error. If our patch coupling estimates are only good to within

10%, then solving to more than one decimal of accuracy is meaningless.

Discretization error can be thought of as how much error we introduce by approximating a

curve by a constant. Thus, in terms of the radiosity problem, discretization error is related to the
change in brightness across a patch, which is, in turn, related to the change in coupling factor

across a patch. This change in coupling factor across a patch is one of two things our estimate in

coupling factor error seeks to quantify.

It is not clear in the current literature to what criterion solving is done. There is no reason to

solve the system to an accuracy greater than that in the coupling estimates. In order to trade off

these sources of error against one another, they must be measured in consistent units, such as

power. The error in the solution estimate is defined as:

N

(53)

3

IIArIL = II (A- fAF)6-AeL (54)

where r is the residual vector.

Equation (54) gives the residual in units of power. For the error in a link, we define the following:

www.manaraa.com

48

Ep^= max (Pp (C;, - C;,) 6,, (C;, - CT,) 6p) (55)

where is the error estimate in coupling ofp and g,

Cp^ is the largest sampled coupling ofp and q, and

is the smallest sampled coupling ofp and q.

Equation (55) gives the estimated error in a link in units of power.

A consistent set of error measures for our calculated solution and couplings is now available.

One can now solve only to the accuracy of the refinement, and refine only to the accuracy of the
solution. Algorithm 8 illustrates this alternation scheme.

Asolution = oo

Arefine = <»

While numlinks < desired_links
If (Asolution < Arefine)

{ Solve to below Asolution.)
{ Return new Arefine.)
Arefine = Refine(Asolution)

Else
{ Solve to below Arefine. }
{ Return new Asolution)
Asolution = Solve(Arefine)

End if
End while

Algorithm 8: Alternation of error types

Experimentation has been done with Conjugate Gradient, Gauss-Seidel, and Jacobi-based

solvers. For purposes of this chapter, Jacobi iteration is used as a simple batch-oriented method.
This algorithm wastes time neither oversolving nor overrefining. The error in both the solution

and the refinement is lowered until the desired terminating condition is reached.

4.3.2 Rowsum correction

One may regard the set of refined links as representing a matrix of coupling factors. The rows

of this matrix must, by the definition of coupling factors, add up to the area of the patch which the

row represents. Since the coupling factors have only been estimated, the row sum will deviate

from the actual patch area by some amount. This error tends to alternate spatially, giving rise to
what is dubbed the "tartan artifact." Figure 10 shows a "Cornell box" rendered with 10,000 links.

Notice the dark bands near the box corners which form a plaid pattern.

The reason for this artifact follows directly from the way links are formed near any internal

corner, and the nature of the coupling estimate used. Near a corner, links from the patches on one
wall to patches on the other wall tend to make two sets of angles with respect to the normal of

each patch. Figure 11 shows an illustration of the coupling estimate versus link angle. Also shown

is the exact coupling for the same configuration. Marked along the horizontal axis are the two

www.manaraa.com

Figure 10: Tartan artifact

www.manaraa.com

50

Cpq

. Exact
coupling

Estimated
coupling

Figure 11: Coupling estimate and actual coupling

angles at which links are formed. In general, the error is different for each angle cluster. The links

formed to the rows of patches near the corner in Figure 10 alternate between these two angles.

Thus, alternately, too much and too little light will be transported between them, and dark bands

will appear.

We know that the rows of the induced coupling factor matrix must add up to the patch areas

in a closed scene. Therefore, in operations involving multiplication by the coupling matrix, we
may use the following correction: Consider the matrix-vector product x = tv, where C is the cou

pling matrix perturbed by errors in coupling estimates. If we calculate the rowsums of C in a

manner similar to matrix-vector multiply, we can construct a correction vector, r = (C/)"' where

i is a vector of I's. This correction vector may be used to scale x. Thus we use x = {Cv) diag (r)

a s a b e t t e r a p p r o x i m a t i o n t o C v .

Figure 12 shows the same scene in Figure 10, but with rowsum correction applied during the

solution. Note the more uniform color of the walls, and the near-disappearance of the bands char

acteristic of the tartan artifact.

4^.3 Clustering of polygons

With complicated geometries containing many initial polygons, the number of initial links cre

ated by existing methods in the hierarchy may be prohibitively high. Other hierarchical methods
treat initial polygons as the root of their own tree. Thus, one grows a forest of hierarchies as the

refinement proceeds.

Here, these independent hierarchies are merged into a single unified hierarchy. The initial

forest is merged recursively, as a preprocess, by joining pairs of sub-hierarchies into composite

nodes. In order to be successful, the composition must capture enough of the salient features of its

constituents to produce a reasonable coupling factor estimate. An added convenience is that a sin

gle link from the root hierarchy node to itself provides a good "ambient" light approximation.

A simple area-to-area coupling factor estimate is found to work well for calculating composite

couplings. The visibility for any link involving a composite node is set to partial. Once this link is

refined to a point where both ends are polygons, a proper occlusion test can be performed.

www.manaraa.com

Figure 12: Rowsum corrected scene

www.manaraa.com

52

An added benefit of clustering is that hierarchical bounding boxes may be built above the ini

tial polygons. This helps with occlusion testing since bounding box checks are much faster than
the "airtight" occlusion test to be discussed next.

As mentioned in the introduction, the algorithm may be started with a single link from the

root hierarchy node to itself. Normally, a link from a node to itself would be meaningless, because

a polygon cannot "see itself." The root hierarchy node, however, is not a polygon, but a composite

of several polygons or other composites. The question arises of how to refine a link from a compos

ite node to itself. Normally, given a link between two unique nodes p and q (they may be compos

ites, patches, or a mixture), the refinement process will split either p or q, and establish links

between the daughters of the split patch and the other original patch. When a self-link (c <-> c)

from a composite node c is split, it is replaced with three links. Assume c can be split into daugh
ters cl and c2. The following links are created: cJ <-> cl, cl o c2, c2 <-> c2. Since either cl or c2

may be composites, self-links must be created for them. If cl or c2 are polygons, the self-link will
be discarded. With this simple scheme, global interchange of light among all patches is accounted

for.

4.3.4 Airtight occlusion testing

If couplings are to be approximated within a given error tolerance, and the solution need only

be computed to within that same error tolerance, why then should an occlusion test fire a constant

number of rays between two patches to approximate visibility? This violates the principle of keep

ing all sources of error in the calculation at roughly the same level. If this kind of scheme were
asked to keep up with the error tolerance in coupling estimates and the solution, a prohibitive

number of rays would have to be fired between the patches. A catastrophic error is possible if all
sample rays hit or miss a partial occluder. In other words, the maximum error for ray casting will

always be 100%. No amount of further refinement will change this. A better way of determining

visibility is needed.

With this in mind, an occlusion test has been created which returns one of three answers; vis

ible, occluded, or partial. Visible or occluded are returned with certainty. It will return partial

obscurément if it cannot determine anything else. Visible links never need any further visibility

testing performed on any links derived from them. Occluded links are simply thrown out since

they propagate no light. Partially obscured links must be tested again at lower levels of subdivi

sion to determine if splitting a patch has caused the visibility to change.

The "airtight" occlusion test takes as input three convex polygonal patches: o, p, and q. Note

that each patch has a front and a back determined by the orientation of its normal vector. A patch

may only emit or receive light on its front side.

After it is determined that p and q face one another and that they do not split the other with
their support planes, the test forms a convex hull between p and q. This hull, together with p and

q, forms a closed, convex polyhedron. The occluding polygon, o, is tested against this polyhedron

to see if it lies outside, inside, or straddles this polyhedron. In the following description, the poly

www.manaraa.com

53

gons p and q will be referred to as the endcaps, and the rest of the hull will be referred to as the
waist.

Note that the waist hull can only be constructed for p and q when they face one another, and
the support plane of one polygon does not split the other.

-Waist polygon

•Waist edge Support plane
of occluder

Occluding polygon

Figure 13: Construction of waist hull

The waist hull (Figure 13) is constructed from the intersection of a number of half-spaces.

Each face of the waist hull is planar, and is represented as an oriented plane called a waist plane.

In the above diagram, each waist plane touches two vertices of one polygon (p or q), and one ver
tex of the other, thus forming a triangle.

An important computational issue to be addressed is what happens when a point is tested for

being on one side or another of a plane, and other similar comparisons against zero. Numerical

error can cause a point lying on a plane to appear to lie on either side, or both sides! Instead of

simply using the sign of a dot product to test, four ideas are employed: a point may be, with

respect to an oriented plane: strictly in front of; on or in front of; strictly behind; and on or behind.
T h i s i s e q u i v a l e n t t o t e s t i n g t h e r e s u l t o f t h e d o t p r o d u c t r b e i n g r > E , r > - e , r < - e , o r r < e .

In the following two algorithms, the < symbol is used to mean "strictly behind," the S sign to

mean "on or behind," and similarly for the > and > signs. The algorithm is expressed as Algo

rithm 9.

www.manaraa.com

54

1. Visibility Test:
If p < g or g < p

return occluded
2. Support Plane Splitting Test:

If support plane of p splits g
or support plane of g splits p

return partial
3. Endcap Test:

If o < p or o < g
return visible

If p>o and gào
return visible

If p<o and g< o
return visible

4. Waist Plane Tests:
Construct waist planes

If o<l or more waist planes
return visible

If the intersections of all
waist edges with support plane
of o lie on or inside of o

return occluded
5. Failing all else

return partial

Algorithm 9: Airtight occlusion test

The details of constructing the waist planes are contained in Algorithm 10. Algorithm 10

details how to construct the waist planes which rest against an edge ofp and a vertex of q. A sim

ilar procedure must be done to construct the waist planes that rest against the edges of q and the

vertices of p. Care must also be taken to ensure that the waist edges are kept in the proper order

such that their intersections with the occluder support plane naturally sweep out the waist poly
gon.

The current implementation of Algorithm 9 for quadrilaterals takes, in the worst case, about

2200 floating-point operations per call. On average it takes about 320 floating-point operations

per call because of early return exits. Note that the occlusion routine will typically be called with

the same p and q many times, but with different occluding polygons. Since most of the calcula

tions are specific to p and q, a drastic reduction in work can be achieved if one reuses the waist
hull from a previous call with the same p and q.

The airtight occlusion test has one drawback for a small number of links. Since it can only test

against one occluding polygon at a time, it will sometimes classify links as partial when, in fact,

they are completely occluded. Consider some p and q with two large abutting polygons ol and q2

between them such that p and q are completely obscured by the combination of ol and o2. The air

tight occlusion test will say that p and q are partially visible with respect to either ol or o2. Since

it has no precise geometric information about the union of ol and o2, it cannot detect that p and q

www.manaraa.com

55

For all vertices i in p:

e = Pvertex[i+1] - Pvertex[i]
For all vertices j in g:

f = Qvertex[j] - Pvertex[i]
n = f x e
If gS:plane (/", e)

Accept planet/,e)
Break j loop

End if
End for

End for

Algorithm 10: Waist plane construction

are actually completely occluded. In effect, p sees q "through the crack" between ol and o2. The

upside to this problem is that further refinement will eventually attenuate the amount of light
which "leaks through the crack" to an arbitrarily small amount—an advantage that the ray trac
ing approach to occlusion testing does not share.

4.3.5 Binary vs. quadtree subdivision

Hanrahan et al. promote the idea of subdividing a quadrilateral into four quadrants when it

needs to be split. This has a major drawback: if an eccentric quadrilateral is split using this phi

losophy, the four pieces will also be eccentric. Eccentric polygons provide very poor coupling esti

mates. Therefore, with quadtree subdivision, the coupling estimates will improve veiy slowly.

Binary subdivision, on the other hand, does not share this problem. The subdivision algorithm

now has a choice as to the way it splits the quadrilateral. It can choose to split the longest side
and the side opposite that side. If a quadrilateral of eccentricity less than J2 is split in this way,

the resulting daughter patches will be more eccentric than the mother. However, when the daugh

ters are split again, their eccentricities will decrease to less than or equal to their grandmother's.

Applied recursively, this scheme will tend to reduce the eccentricity of the subdivided patches.
Since daughter patches are less eccentric than their mothers, they will have better coupling esti

mates to other patches in the scene.

4.3.6 Flaw in area/form factor threshold reasoning

The original algorithm proposed by Hanrahan, Aupperle, and Salzman used two error criteria

to terminate subdivision: A^ and Pg. was the smallest form factor a link was allowed to have. If

a link ever fell below this threshold, it was never again considered for refinement. Ag was the

smallest area a patch was allowed to have. If a patch became smaller than Ag, then it could not be

subdivided further.

Apparently, the Ag and F^ criteria still exist in both formulations of the hierarchical radiosity

method [Hanrahan 91, Smits 92]. Both disclaim that with BF refinement and/or importance-

driven refinement, the A^ test is seldom necessary. Form factor error is not in itself important.

www.manaraa.com

56

Only as an element of energy transport does it have any significance. implies error is the goal of
refinement; it is not. The real error criterion is reflected power: Only the reflected power

criterion should be used; it should not be augmented with an arbitrary A,, or F^ test.

In fact, it is simply wrong to use an arbitrary threshold of any kind in the refinement process.

If the error in a link is so large that a patch needs to be split, then it should be split. If it is not,
then one has one has effectively established a minimum error below which the algorithm can no

longer accurately refine. The A<. and F^ thresholds are not simply superfluous; it is incorrect to use
them and expect the algorithm to proceed accurately.

4^.7 Link subdivision

The algorithms of both Han rah an and Smits refine links to some chosen error criterion, which
we will call {BF)^, at each subdivision step. All links whose errors are greater than than (BF)^

are refined until the error in all subsequent links falls below (BF)^. In neither case does the

author indicate how (BF) ̂ is chosen intially, or how it is lowered.

We propose keeping the links in a priority queue (link heap) organized by their estimated link

error. This way, the link with the largest error is immediately available. Pushing links onto and

popping links off of the heap are both 0{N) operations. When a system solution step is performed,

all link error estimates are changed, and thus the heap must be reheapified. This is an 0(AO oper

ation, and does not change the overall time complexity of the algorithm. Keeping the links in a
heap structure has the advantage of always attacking the greatest source of error among the

links. Thus, the overall link error is lowered as quickly as possible, and the greatest economy is

achieved in terms of the number of links used to obtain a certain error.

4.3.8 Unidirectional vs. bidirectional links

Even with the space for coupling factors reduced from 0(.N^) in the number of patches in a

scene to OiN), the hierarchical radiosity method is still memory-limited on most computers. Sev

eral factors have contributed to this:

• Coupling estimates between patches can be generated quickly.
• Since the coupling matrix has only 0(AO blocks, solution time is also 0(AO.
• With alternation of error types, excess time is not wasted solving to too high an accu

racy.
• Occlusion testing between patches is relatively inexpensive when compared to ray cast

ing.

In its original form, the hierarchical radiosity method used unidirectional links. That is, a

coupling between patches p and q had a link at p pointing to patch q, and vice versa. Thus, the

storage used for couplings was twice what it should be. This exacerbates the memory-limited

nature of the hierarchical algorithm. Far worse in a computational sense is that the storage for
these links is scattered throughout physical memory in a computer. Since each node in the hierar

chy must have room for a variable number of links to other nodes, several serious performance-

limiting issues exist:

www.manaraa.com

57

• Static storage. One may allocate a constant amount of space per node for storing links.
If the list is too small, a node may overflow its link table. Even if chosen correctly, hav
ing a constant-size list of links at each node will waste a tremendous amount of mem
ory.

• Dynamic storage. One may dynamically manage link tables at each node. The overhead
of calling a memory allocator every time a link table needs to be expanded will become
crippling. Furthermore, memory will become extremely fragmented after the algorithm
has run for a while. And again, the possibility of egregious memory waste exists.

• Priority queueing of links. In order for link refinement to proceed, the link with the
greatest error in propagated energy must be available for refinement quickly. This
means either keeping a copy of all links in the hierarchy or searching the hierarchy.

The only practical reason for storing the links owned by a particular patch in the patch data
structure itself is to facilitate shooting of light. A more efficient strategy is to remove the links

from the hierarchy, and keep them in a dedicated priority queue, or "heap." This way, one only
stores one copy of the link, makes the best use of memory possible, and keeps links in a form

where the link with the largest error is available quickly.

4.3.9 Coupling estimates

Hanrahan et al. use a single point-to-disk coupling estimate. We have observed that the cou

pling factor estimate takes a small fraction of the total time in a hierarchical radiosity calculation.

Thus, investing more work to more accurately estimate the coupling and its error is warranted.

We use the four corners, plus the average of the four corners, as five sample points on each
patch. The coupling estimate between 8 pairs of these sample points is then computed. The cou

pling estimate between the "centers" is calculated, and counted twice. The minimum and maxi

mum of these 10 coupling factor estimates are tracked to estimate the error in the final coupling

factor estimate. Singular couplings produced by patches that touch are replaced with zero, since
the singularity disappears in integration.

At this stage, coupling factor samples are allowed to be negative. Negative couplings will hap

pen when one of the sample radii passes behind either patch, such as when the support plane of

one patch splits the other patch. Since the minimum of all coupling estimates will be negative in
these cases, the difference between the maximum and minimum will be larger than if negative

couplings are simply discarded, or treated as zero. This has the beneficial effect that links

between patches where a plane splitting occurs are split sooner than links between other patches.

To form the overall coupling estimate, all non-negative coupling estimates are averaged. Also,
partial couplings are scaled by 0.5 in the absence of information regarding Aow partial the visibil

ity is.

4.3.10 Estimation of error in coupling estimates

The error estimate in a coupling factor estimate serves a dual purpose. First, it seeks to quan

tify the error which is intrinsic in the coupling estimate between two patches. Second, it seeks to

quantify the variation in coupling factor across a patch. This variation in coupling factor is a mea

www.manaraa.com

58

sure of discretization error. Thus, this error estimate is used to control both the error in links and
the error in discretization of patches.

4.4 Results
The "harpsichord practice room" (Figure 14, Figure 15) was solved on a DEC station 5000/240

with 32 MBytes of physical memory in 50 minutes. 500,000 links were created, and the resulting

hierarchy had 23,423 leaf-level patches. 63.5% of all links are completely unoccluded, the remain

der are partially occluded. 19,291 links were thrown out due to total obscurément. Only 36.5% of

the total time was spent refining links. 62.9% of the time was spent solving for patch radiosities.
The remaining 0.6% was spent reading the scene description, and writing the patch positions and

radiosities. The algorithm required approximately 19 MBytes of physical memory to run. Below in

Table 4 is a report from our program. Note that we have purposely left Figure 14 and Figure 15

unsmoothed so that any solution artifacts that remain can be clearly identified.

Table 4; Program performance report

500,000 links:

Task Seconds Operations MFLOPS % of Time

Reader 0.16 19022 0.122 0.0%

Refine 1092.25 5709913505 5.228 36.5%

Solver 1881,17 1379848860 0.734 62.9%

Storer 19.21 4931430 0.257 0.6%

TOTALS 2992.79 7094712817 2.371 100.0%

4.5 Summary
In any physical problem, there are multiple sources of error. By understanding these sources

and exploiting the fact that no part of the problem need be solved to an accuracy greater than that

of any other part, we may arrive at an acceptable solution with minimal work.

Previous work has treated solution error in a cavalier manner. Shooting was used to solve for

patch radiosities without regard for the error present in patch-to-patch coupling estimates. We

have set forth a method of objectively alternating between link refinement and radiosity solution

that keeps both types of error in balance. A measure of discretization error is incorporated into

our link error estimate as well.

A novel self-consistency check called "rowsum correction" is based upon well-known proper

ties of form factors, and is effective in dealing with image artifacts created by systematic inaccu

racies in coupling factor estimates.

www.manaraa.com

59

Figure 14: Harpsichord practice room without rowsum correction

www.manaraa.com

Figure 15; Harpsichord practice room with rowsum correction

www.manaraa.com

61

CHAPTER V

MAKING THE HIERARCHICAL METHOD PARALLEL

5.1 Elements of a Good Parallel Program
Before launching into the details of how to implement the hierarchical radiosity algorithm on

a parallel machine, let us pause to review what the attributes of a successful parallel program

are. Some of these attributes are common-sense matters, and some have had their importance

emphasized only through extensive experience with multiple parallel architectures.

First, let us consider efficiency. In this context, we define efficiency as a subjective measure of
"how well" a particular algorithm utilizes the hardware it is running on relative to another algo

rithm running on the same hardware. A parallel implementation should not suffer a large penalty
just because it is being run in parallel. Many factors contribute toward the final efficiency of an

algorithm-hardware combination such as algorithm choice, hardware platform choice, data
decomposition and mapping, control structure decomposition and mapping, effective load balanc

ing, and effective use of language features. A most effective illustration of just how much effort

has been expended on this topic is in the area of linear equation solving. A vast number of matrix

decomposition strategies have been studied to see how well-suited they are to a particular parallel

architecture. Matrix decomposition strategies tried include: row-wise wrap mapping, column-wise

wrap mapping, row-wise serpentine mapping, column-wise serpentine mapping, horizontal strip

wrap mapping vertical strip wrap mapping, 2D block decomposition, 2D scattered decomposition,

etc. Hardware topologies studied include hypercube, torus, mesh, ring, and various bus-based sys

tems. The point is that a problem may be approached from many different angles; one must be

extremely careful when laying out the software architecture for an application from the very

beginning.

Next, we focus on algorithm choice. On a uniprocessor machine, algorithm choice is not nearly

as critical as on a parallel machine. Notwithstanding data dependencies, the manner in which

data is accessed and the order in which computations are performed matter little, aside from pipe

line and cache effects. On a parallel machine, however, things are different. First, there must be

sufficient work to perform at all times to keep all processors busy. If there is insufficient parallel

ism in the algorithm, efficiency will suffer due to unutilized processors. There is also the issue of
data locality. All present large-scale parallel computers have fast memoiy local to each processor,

and a slower method of retrieving data from other processors. In some cases, this data retrieval is
performed via explicit message-passing; in others, it is handled by a shared virtual address space.

In all cases, remote memory access is significantly slower than local memoiy access. If an algo

rithm constantly requires data from other processors to operate, its efficiency will suffer. Every

effort must be made by the programmer to insure that as much data as possible is local so as not

www.manaraa.com

62

to incur communication penalties. Sometimes, this means not choosing the best serial algorithm
available, but rather backing up to an algorithm which has a sufficient amount of parallelism to

exploit.

With the recent availability of large scale parallel computers, scalability issues must be taken

into account. Put simply, scalability is a measure of how well an algorithm is able to effectively

utilize an increasing number of processors. An algorithm should not be prejudiced toward a par

ticular size of parallel computer. Where possible and reasonable, it is desirable to make an algo
rithm independent of exact machine topology, or at least modularize the communication

primitives so that they can be easily modified if the algorithm is moved to a new architecture.
This leads us to our next topic: portability.

From the beginning, an algorithm should be designed as architecturally-independent as possi

ble. The extremely short product lifespan of current parallel computers makes forward-thinking
software design critical if an application is to survive more than a few years without major rede

sign.

5.2 Statement of Algorithm
Until now, only a general outline of the hierarchical radiosity algorithm has been given. In

order to conduct a meaningful discussion on how to make it parallel, a more detailed description

of the hierarchical algorithm is in order. Provided below is a detailed pseudocode description of

the exact algorithm to be discussed in this chapter.

We will now review the serial implementation details of several key steps in Algorithm 11.

First, let us define some terms, and visualize the major data structures of this algorithm. The
scene is defined by the user in terms of a set of polygons which form a closed environment.

Another user-specified quantity is the number of links they wish the algorithm to use to propa
gate light about the scene. It is the algorithm's responsibility to use these links in the most effec

tive manner possible. Step 3 states that a hierarchy should be built atop the given polygons.

Figure 16 shows how the hierarchy of composite nodes is constructed. Note that the composite

nodes are numbered, starting from 1, in the order that they are created. The root composite is
numbered zero. The input polygons are placed into a queue to start with. Pairs of nodes are

removed from the head of the queue, and a composite node constructed as their parent. The new

composite node is then pushed onto the tail of the queue, and the process repeated until there are

no nodes left. The last composite formed is called the root node, here numbered zero.

A word is in order about what kind of data is and is not stored in the nodes of the hierarchy.

Every node in the hierarchy contains the following data; the area of what the node represents, be

that a polygon or a composite; a center which will be used as the 3D coordinates of a patch; loca

tions for storing hierarchical vector elements (to be discussed below); and left, right, and parent

pointers to implement the tree structure of the hierarchy. Each polygon node contains the follow

ing additional data: its four vertices (which must be coplanar), a normal vector to the polygon, and

a bounding box to be used to speed up occlusion tests involving the node. When polygons are sub-

www.manaraa.com

63

1. Read the list of polygons comprising the scene and their properties
2. Read in the number of links to form, reglinks
3. Build hierarchy above these polygons forming composites recursively
4. Initialize all composite nodes
5. Initialize the link heap
6. Initialize brightness solution vector to patch emissivities
7. Form a single link from the root node to itself
8. Push this link onto the link heap
9. Set numlink = 0
10. Set solv_error = 0
11. Set link_error = error in the root self-link
12. While numlink < reglinks
13. While link_error > solv_error
14. Remove link from top of heap
15. Subdivide the end of the link with the greatest error
16. Form two new links from the unsplit end of the original link

and the two new patches
17. Evaluate the new links' visibility
18. Approximate couplings for the new links
19. Compute an error estimate for each link
20. Push the links onto the heap if they are not totally occluded
21. Increment numlink accordingly
22. Set link_error - error in link at the top of the link heap
23. End while
24. Set solve_flag = 0
25. While solv_error > link__error
26. Conduct one step of Jacobi or Conjugate Gradient iteration
27. Compute a new soIv_error
28. Set solve_flag = 1
29. End while
30. If solve_flag = 1
31. Update all link error estimates due to new solution vector
32. Reheapify the link heap
33. End if
34. End while
35. Write out the leaf-level patches and their brightnesses

Algorithm 11: Improved hierarchical radiosity

divided during the solution process, daughters are added below them which are identical in struc

ture and content to the original polygon nodes.

In previous radiosity Tenderers, the solution to the radiosity equation is a vector of patch

intensities (see equation (8) on page 15). In the hierarchical radiosity algorithm, the solution can

still be regarded as a vector, but the definition of a vector must be modified slightly. For purposes

of hierarchical radiosity, we shall call the lefl-to-right ordering of the patch brightnesses in the

leaf level of the hierarchy a hierarchical vector. All quantities in (8) which were conventional vec

tors become hierarchical vectors in the context of hierarchical radiosity. The form factor matrix,

F^j becomes a hierarchical matrix, whose structure and elements are induced by the links created

in the refinement process. Shown in Figure 17 is a hypothetical patch hierarchy with a set of six

links connecting the nodes of the hierarchy. Note that nodes in the hierarchy are not identified as

www.manaraa.com

64

Comp

Comp Comp

Comp Comp Comp Comp

Poly Poly Poly Poly Poly Poly Comp Comp

Poly Poly Poly Poly

Figure 16: Construction of composite hierarchy

Node

Node Node

Node Node Node Node

Node\ /Node

Figure 17: Couplings in a patch hierarchy

polygons or composites. It does not matter whether the end of a link points to a polygon or a com
posite; the nature of the link remains the same. Each link is labeled with its coupling factor value.

There are five leaf nodes in the sample hierarchy. Therefore, we should expect to solve a system of

five equations in five unknowns. The linear system coefficient matrix that is induced by the links

in Figure 17 is shown in Figure 18. This is matrix C in equation (15) on page 17. Note that

Cpg = Cqp due to the definition of coupling factors (equation (14) on page 16). Now that we have

the concepts of hierarchical vectors and hierarchical matrices, it makes sense to talk about opera

tions on them. Element-wise operations on hierarchical vectors are trivial. One simply applies the

operation (addition, subtraction, scaling, negation, etc.) to the hierarchical vector element or ele

ments in each leaf node in the hierarchy Hierarchical vector dot product, and norms are handled

www.manaraa.com

65

Figure 18; Structure of coupling matrix

similarly. Hierarchical matrix-vector multiply is somewhat more complex, and will be discussed

later in this chapter.

Step 4 calls for the initialization of all composite nodes in the hierarchy. As discussed in the

section titled "Clustering of polygons" on page 50, a composite node serves to summarize salient

geometrical features of all patches in its subtree. The area of a composite is the sum of the areas

of its daughters. Each hierarchical vector element is the area-weighted average of its daughter's
corresponding elements.

Step 5 calls for the initialization of the link heap. Later on in the algorithm, it will be neces

sary to have fast access to the link with the largest error. A heap provides a log-cost method for

popping the link with the largest error, and adding new links.

www.manaraa.com

66

Steps 7 and 8 form a single link from the root hierarchy node to itself, and push it onto the
link heap. The intuitive significance of this step is important. The root hierarchy node represents

all patches in the scene. A link between two nodes in the hierarchy says that those two nodes are
exchanging energy. A link from a node to itself represents an exchange of energy among its con
stituents. Thus, a link from the root (composite) node to itself represents a scalar summary of all

light interaction in the scene. Note that a link from a node to itself only makes sense for a compos

ite node. A patch cannot emit light that will directly fall on itself because it is flat. Another impor
tant point is that the system starts out fully connected', every patch sees every other patch

through this single link. Whenever a link subdivision is performed, this full connectivity is main

tained.

In the next several steps, the variables link_error and solv_error are initialized. The

variable link_error is the largest error estimate of any link in the system. This error is lowered

by subdividing links. The variable solv_error is the residual from the approximate iterative
solution to the radiosity equation. It is lowered by running the iterative solver for additional iter

ations. They key idea with these two variables is that there is no reason to solve the system to an
accuracy greater than that of the link subdivision, and no need to subdivide links any more accu

rately than the patch radiosity solutions. Thus, the algorithm alternately subdivides links, and
solves in a leap-frog fashion until the desired number of links have been constructed.

Step 15 performs two distinct actions; it decides which end of the link to split, and then actu

ally subdivides that node. The decision regarding which end to split is relatively simple: If the

nodes at both ends of the link are composites, the larger composite is split. If only one of the nodes

that the link connects is a composite, then the composite is split. Otherwise, both ends of the link
are polygons, and the larger one is split. Splitting a composite node is a null operation since com

posite nodes already have daughters. Splitting a polygon is a null operation if it has already been

split by a previous link refinement. Note that it is possible to split the same hierarchy node many

times during the course of link refinement. If the polygon has not been split, it is split into two

smaller polygons along a line connecting the midpoints of its longest side and the side opposite.

Steps 16 through 19 form and initialize two new links to take the place of the one link popped

off the top of the heap in step 14. A link contains the following quantities: a coupling estimate

between two nodes in the hierarchy, references to each of these nodes, a visibility flag, and an error

estimate. Steps 20 through 22 push these new links onto the link heap, update the link count, and

retrieve the new maximum coupling error estimate.

Steps 24 through 28 conduct just enough iterative solution steps to bring the solution residual

under the maximum estimated link error. An explanation is in order about the choice of hierarchi

cal vector norms for use in these steps. One-, two-, and infinity-norms all work for hierarchical

vectors, but they have different physical interpretations in the context of the radiosity problem. If
we use the one-norm, we imply that the error in the solution is proportional to the sum of the

errors in all patch radiosities. The two-norm implies that errors in patch radiosities are indepen

dent random variables. Both of these norms tend to smear out the effect of a single large error.

www.manaraa.com

67

The eye is not so forgiving! In a scene where a single patch's radiosity is significantly in error, the
human eye will pick it out right away, even though the one- or two-norm will show a small overall
error. The infinity-norm, or m ax-norm, gives us the maximum error in any patch radiosity, thus

more closely mimicking what the eye does. Similarly, the link_error measure is the result of a

max-norm type operation. It is only because these two error quantities are arrived at via similar

means that it makes sense to directly trade them off against one another.

Steps 30 through 33 are performed only if the system solution has been changed by the pre

ceding steps. Their purpose is to update the link error for all links. Note that the link error esti

mate changes when patch radiosities change. This was explained in the section titled "Flaw in

area/form factor threshold reasoning" on page 55. When the error for all links in the heap

changes, the ordering imposed by the heap structure is no longer valid. Therefore after each solu

tion refinement phase, the link heap must be "reheapified." A critical observation here is that

rebuilding a heap from an unordered array is 0(iV), not 0{N log N) as is popularly believed (see
[Gormen 90], page 145). Therefore, the complexity of the reheapify operation is asymptotically

similar to that of the link refinement and system solution steps.

The While loop from step 12 to step 34 continues to run, alternately refining links and solving

until the requested number of links have been formed. Then, the final leaf-level patch geometry is

written to an answer file, and the algorithm terminates.

5.3 Observations
After reviewing Algorithm 11, we are in a position to make some observations which will be

useful in making it parallel. The first two observations concern the link heap, one of the two major
data structures in the algorithm. Algorithm 11 refines one link from the link heap at a time. With

a large number of links in the link heap, many of the top links in the heap will be subdivided

before the next solution step. Why not take several links off the heap at once and subdivide them
all as a batch? This would save L - 1 reheapify steps, where L is the number of links in a batch.

The possibility exists, however, that some links in the batch would subdivide into links which

themselves would otherwise have been immediately split. These links, which would normally

have been further refined in an imminent refinement step will have to wait for the next batch to be

split. Thus, some links which would have been split had we refined them one at a time will not be

refined, and some links which would not have been split will be. Experimental evidence, to be pre

sented later, shows that this effect is not a serious problem provided the batch size is kept reason

ably small.

The serial Algorithm 11 maintains a single monolithic link heap so that the link with the larg
est error can be removed at each step, Once we have decided to split links in batches, there is no

reason for the heap to remain a monolithic structure. Indeed, it may be broken into a number of

smaller heaps, and distributed across the processors in a parallel machine. Link subdivision may

then proceed locally on each processor from its local heap. The exact nature of this decomposition

will be discussed below in Section 5.4.

www.manaraa.com

68

Principle 1 (Link heap); The link heap may be broken into several smaller link heaps, and these
"subheaps" distributed across the processor array. Links from each subheap may be refined

separately to increase parallelism.

The other major data structure in the hierarchical radiosity algorithm is the hierarchy of

patches itself. All hierarchical vector operations involve calculations at the leaf level. Hierarchical
matrix-vector multiply, as we will show later, requires calculations involving every link in the link

heap, and every node in the hierarchy. Furthermore, these calculations must be carried out in a
partial ordering that is most conveniently satisfied by preorder and postorder tree traversais. For

a tree traversal to make sense, a connected path must exist from root to leaf. Thus, any decompo

sition strategy we develop for the patch hierarchy must be conformai with tree traversais.

Principle 2 (Hierarchy decomposition): Any patch hierarchy decomposition strategy must leave a

traversable tree structure intact in every processor. Furthermore, the decomposition strategy

must not incur any unnecessary interprocessor communication to conduct a top-down or bot

tom-up traversal.

5.4 Identifying Sources of Parallelism
The first step in making any algorithm parallel is to identify potential sources of parallelism

to be exploited. The second step is deciding upon decomposition strategies for the data structures

and control structures which have been targeted in the first step. There are two general classes of

parallelism: data parallelism and operational parallelism. Data parallelism is exploited by
decomposing and distributing data structures across processors. Operational parallelism is

exploited by decomposing and distributing operations across processors.

5.4.1 Data parallelism

As mentioned earlier, there are two major data structures in the hierarchical radiosity algo

rithm: the link heap, and the patch hierarchy. Both of these data structures are candidates for dis

tribution across the processing elements (henceforth referred to as PEs) of a parallel computer.

We must decide which of these data structures, if not both, should be distributed. We base our

decision on the ratio of links to patches, as per the arguments in the section titled "Analysis of

time complexity" on page 28, the section titled "Analysis of time complexity" on page 36, and

[Hanrahan 91]. All of these arguments state that the ratio of the number of links to the number of

patches in a hierarchical rendering is 0(1). Thus, neither data structure will ever dominate the

other in terms of the total amount of memory consumed. Therefore, both the link heap, and the

patch hierarchy must be distributed. A single link and a single hierarchy node are respectively

atomic units of each data structure, and will not be decomposed further.

5.4.2 Operational parallelism

Analysis of a serial version of the hierarchical algorithm has shown that there are four main

tasks or task classes which must be made parallel. They are: link subdivide, link heap reheapify,

operate on hierarchical vectors, and hierarchical matrix-vector multiply. All of these operations

www.manaraa.com

69

are 0 (N) with respect to the number of links and are therefore the asymptotically-limiting compo

nents of the algorithm.

5.5 Data Decomposition Strategy
5.5.1 Node hierarchy

A link will require data from two different nodes in the patch hierarchy when used in the

matrix-vector multiply operation. In order to minimize interprocessor communication, we could
require that a PE owning a certain link also own the hierarchy nodes at both ends of the link.

However, we know that the patch hierarchy is fully connected via links at all times, therefore a

PE will own hierarchy nodes which are also owned by other PEs. This is impractical due to the

ambiguity introduced in determining which PE or PEs update the duplicated hierarchy nodes.

Also, extra work would be required to keep all duplicated versions of a hierarchy node up to date.

Thus, requiring a PE to own the hierarchy nodes at both ends of all links its owns is impractical.
A compromise is requiring a PE to own all the hierarchy nodes on only one end of its links.

Principle 3 (Relationship between owned links and hierarchy nodes): Regardless of how the link

heap is decomposed, we require a PE to own all the hierarchy nodes on the (arbitrarily-
defined) "left" end of all owned links.

To derive more desirable properties of a patch hierarchy subdivision scheme, we consider the
act of subdividing a link. Suppose a given PE owns some portion of the link heap and some portion

of the patch hierarchy, according to some unspecified decomposition strategy. We also assume, in
keeping with Principle 3 and without loss of generality, that a PE owns the hierarchy nodes corre

sponding to the "left" ends of all owned links. When a link is pulled off the local link heap for sub

division, several things could happen depending on the specifics of the hierarchy decomposition.

Refer to Table 5 and Figure 19 for illustrations of the four cases of parallel link subdivision.

Table 5: Situations in parallel link subdivision

Node ownership

Owns daughters of left
node

Does not own daughters of
left node

S
u

b
d

iv
is

io
n

 a
ct

io
n

Subdivide left
end of link

Case 1
• Local link subdivision
• Links remain local

Case 2
• Subdivide patch and send

to owning PE
• Links must migrate to

owners of left daughters

S
u

b
d

iv
is

io
n

 a
ct

io
n

Subdivide right
end of link

Case 3
• Tell owner of right end to

subdivide and send to
owning PE

• Links remain local

Case 4
• Tell owner of right end to

subdivide and send to
owning PE

• Links remain local

www.manaraa.com

70

Subdivide left and local
PE owns daughters

Original
Lmk-

New
Links

Local PE Owns Remote EE Owns

Subdivide left and remote
PE owns daughters

Original
Lmk-

New
Links

Local

Remote PE Owns Remote PE Owns

Subdivide right and local
PE owns daughters

Original
Link-

Now
Links

Local PE Owns Remote PE Owns

Subdivide right and remote
PE owns daughters

Original
Lmk-

New
Links

Local

Remote PE Owns Remote PE O wns

Figure 19: Cases of parallel link subdivision

Case 1 requires no internode communication at all; all operations are local to a processor.

Case 2 incurs potentially four messages to two other PEs: two to send new patch geometiy data,

and two to migrate the new links to their owners. Cases 3 and 4 each potentially require three

messages to be sent: one from the owner of the link to the owner of the patch to be split, and two

from that PE to the owners of its daughters. One has no control over whether the left or right end
of a link is split. One does have control over whether the owner of a particular hierarchy node also

owns the children of that node as well. This divides Table 5 into two groups: Cases 1 & 3, and

Cases 2 & 4. Assuming that it is equally likely that the left and right end of a link is split, the

average number of messages for Cases 1 & 3 is 1.5 messages while the average number of mes

sages for Cases 2 & 4 is 4 messages. The choice seems clear.

Principle 4 (Hierarchy locality): The PE which owns a given hierarchy node should also own one

or both daughters of that node. This is equivalent (in the case of both) to saying that the patch

hierarchy should be distributed by subtrees. For the case of a PE owning both daughters, we

shall refer to this subtree as an owned subtree.

Regardless of what specific data decomposition is chosen for the hierarchy, it must provide a

good load balance both in terms of data volume and computation volume. If it does not, the algo

www.manaraa.com

71

rithm will poorly utilize the processors of the parallel machine. Principle 3 effectively ties
together the decompositions of the link heap and the patch hierarchy, so if one is load-balanced,
the other will be. Principle 4 places preferences on how hierarchy nodes should be clustered on a

PE, so the patch hierarchy decomposition will drive the link heap decomposition.

Suppose we choose a level (counting from the root, starting at 0) in the patch hierarchy, and

call it dlevel, for distribution level. We will distribute the subtrees rooted at level dlevel across the

processors in our parallel computer. This type of distribution satisfies Principle 4. But what of the

hierarchy nodes between the root and dlevel?

5.5.1.1 Hierarchy decomposition method 1

A "first-blush" attempt at resolving this question might be to duplicate the patch hierarchy
above dlevel to all PEs in the system. This duplication will also satisfy Principle 2. All processors

would own and update all hierarchical vector elements and links associated with all duplicated

hierarchy nodes. Such a scheme has the advantage of simplicity, and a low overhead for communi

cation. Its disadvantages, however, are crushing. First, such duplication of hierarchy nodes and

links imposes an inherent scalability problem. We know that

All PEs Own

m;###*##}
28112911Ï 30 ÏI if 31 J|

PS

Figure 20: Hierarchy decomposition method 1

dlevel >lnproc (56)

where Znproc = floggCnproc)], and

nproc is the number of PEs in the system.

If the inequality in (56) were not satisfied, then there would not be enough subtrees to distribute

to all PEs, The total amount of memory consumed by the duplicated hierarchy nodes is:

www.manaraa.com

72

X roc X (2""""'+: - 1) ^M^„^^,y.nprocx (2'""'''"=+'- 1)

= X nproc x (2 x nproc - 1)

= 0 { n p r o c ^) (57)

where is the amount of memory consumed by one hierarchy node.

Under this decomposition scheme, the total amount of memory consumed by the algorithm

will be on the order of nproc^, which clearly makes the algorithm unscalable. This alone is

enough to disqualify such a decomposition from consideration.

Note that the hierarchy nodes in Figure 20 have been renumbered. This new node numbering

scheme has the following properties: the left daughter of a node has an ID number twice that of its

parent, the right daughter has an ID number twice that of its parent plus one, and the nodes at

level L in the hierarchy are numbered from 2^ to inclusive. Also, if the ID number is

viewed as a binary number, it has a specific form: a 1 in bit L, followed by L unique position-

determining bits. That is, the ID number for a hierarchy node completely encodes its absolute

position in the hierarchy. One simply works from left to right in the L bits to the right of the lead
ing 1 bit, and treats a 0 bit as "left" and a 1 bit as "right." By following the path specified in this

interpretation down from the root node, one arrives at the hierarchy node. For example, let us
consider node 25 in Figure 20. The decimal number 25 is 11001 in binary. The four bits to the

right of the leading 1 bit say to follow a path of right-left-left-right down the hierarchy. If we fol

low this path from the root, we arrive at node 25. Although not particularly important now, this

property will be of critical importance later.

This hierarchy decomposition method has an additional drawback. Consider what happens at

the beginning of Algorithm 11. A single link is pushed onto the link heap and refined. Under the
current hierarchy (and therefore link heap) decomposition strategy, all PEs in the system would

refine exactly the same set of links until one of them refined a link-end below dlevel in the hierar
chy. Thus, there is no parallelism whatsoever until links are split below dlevel. In a system with

only a few processors, this might not be a problem since dlevel will be small. On a larger system,
however, the algorithm might never run long enough to split a single link below the distribution
threshold! This observation shows further unscalable behavior in the hierarchy decomposition

method under consideration.

5.5.1.2 Hierarchy decomposition method 2

In an effort to reduce the amount of hierarchy node and link duplication, we may designate a

PE to own a hierarchy node above dlevel if and only if some portion of the subtree rooted at the

node is owned by that PE. An illustration of this modified hierarchy decomposition method is

shown in Figure 21. This new decomposition method has a number of advantages over the previ

ous method. Redundant storage for hierarchy nodes is decreased significantly (this will be quanti

fied shortly). Parallelism above dlevel is increased because not as many links are duplicated on

multiple processors. Parallelism increases gradually as one proceeds down the hierarchy; this is

www.manaraa.com

73

P64,6,€,7

All PEB Own

clleuel=4
lnproc=3

PE 0, 1,2. 3 PE4,5,6,7 PEO, 1,2^#
5 ^ le

PES, 7 PEO.

in f i2

PE2.SPE4^
isi (u

PE2,3PB4,5

9 1 (10

PEG, 7

16j f 17) (18j (19) {20J (21) 1221 f 23) (24) (25) (26) (27) (28) (29) (30) ^31j

PEO PB 1 PE2 PEâ PE4 PEG PE$ PE7 PEO PEÎ PE2 PJE3 PE4 PE6 PEg PE7

Figure 21: Hierarchy decomposition method 2

in stark contrast to method 1 where there is no parallelism at all until a link is subdivided below

dlevel.

Before we analyze the memory consumption of method 2, we first notice that there are 2^

hierarchy nodes at level L. We may also notice that the number of PEs on which a hierarchy node

is stored is 2'^'""'"^. Now, the total amount of memory consumed by the hierarchy above dlevel is

M, hnode

dlevel -dlevel "Inproc

^ nproc X 2^+ ^
L = 0 L Si die vel - Inproc + 1

^dlevel — L ^

M, hnode

dleuel

nprocx(2'"""'-'''P""+'-l)+ ^ 2
L = dlevel-Inproc-i-l

dleuel

= [nproc X + (/«proc -1) 2"'""']

SM hnode

gfnproc -j
2 X nproc x - nproc + Inproc x nproc - nprocj

= A/^node X Inproc X nproc

= 0 { n p r o c x h g (n p r o c)) (58)

The total amount of memory consumed by the duplicated nodes is much less than in method

1, especially for a large number of processors. However, there is still the duplication of hierarchy

j

www.manaraa.com

74

nodes, and the corresponding links associated with these nodes. There are other drawbacks,

which will become clear in subsequent sections when load-balance issues are studied.

5.5.1.3 Hierarchy decomposition method 3

The primary failing of methods 1 and 2 is their inability to deal with parallelism in the patch

hierarchy above dlevel. Both of these are strongly affected by the duplication of hierarchy nodes.

Solving the duplication problem would seem to herald a major step forward. If we start at the
level above dlevel, and work our way up, assigning ownership of each node to the PE owning the

left daughter, we have the decomposition shown in Figure 22.

EE 0

FBO PE4 PEO

PÈ6 PEO PË2 PË4

PEO PEl PE2 PES PE4 PES PE6 PE7 PEO PBl PB2 PB$ PB4 PEG PB6 PE?

Figure 22: Hierarchy decomposition method 3

Figure 22 shows a hierarchy decomposed in such a way that there is no duplication of hierar

chy nodes across PEs. There is just one problem with this decomposition; it violates Principle 2.

We can solve this problem too by asserting that a PE owns all nodes in the hierarchy above dlevel

which have descendants owned by that PE. Such a duplication is identical to that shown in Figure

21 with one major difference: every hierarchy node has a unique owner. A particular hierarchy

node may exist on multiple PEs, but it is only owned by one. The instances of the node on non-

owner PEs are merely placeholders in the hierarchy structure; they contain no data, and they

have no operations performed upon them. Note that since duplication (in ownership) of hierarchy

nodes has been eliminated, so has duplication of links.

Eliminating duplicate node ownership exposes the major flaw in this decomposition. Notice in

Figure 22 that PE 0 owns 9 hierarchy nodes on or above dlevel. Also note that PE 7 owns only 2.

This load imbalance only gets worse as dlevel is increased for a constant Inproc because all nodes
in the first dlevel-lnproc levels are owned by PE 0. Since ownership of hierarchy nodes dictates

ownership of links (by Principle 3), there will be a significant imbalance in the distribution of

links, and hence in the amount of work for each PE. Even though all links will eventually be

www.manaraa.com

75

refined below dlevel, performance will suffer early on. This is precisely the failing of methods 1
and 2 which we had hoped to fix.

5.5.1.4 Hierarchy decomposition method 4

Instead of numbering the leaf nodes as shown in Figure 22, we can renumber them to cause a
more even distribution of nodes further up the hierarchy. In the arrangement shown in Figure 23,

we can see that PE 0 now owns only 6 hierarchy nodes, while PE 7 still owns 2. The burden on PE

0 has been significantly reduced, even for this small number of processors. With a larger number

of processors, the advantage becomes greater. This numbering is not arbitrary, but rather cycles

through the bits of the owning PE number and flips the bit for the right daughter of a node, and

does not flip it for the left daughter of a node. Note that if a PE owns node p, it also owns the left

daughter of p. Total memory consumption for decomposition method 4 is still

O {nproc X log (nproc)) due to the necessity of placeholder nodes.

•PEO

PEO PE4

PE2 PE4 PE

PEO PEl PE2 PE3 PE4 PB 7

PEO PE4 PEl PEG PE2 PE 6 PE 3 PE 7 PE4 PEO PES PEl PEG PE2 PET PE3

Figure 23: Hierarchy decomposition method 4

We may best derive the ownership of a hierarchy node using operations on binary numbers.

The owning PE number is constructed in the following way using bits from its ID number. Recall

that the ID number is a 1 bit followed by dlevel position-determining bits, which we will call G,

followed by some number of irrelevant bits, X. The G bits encode a path from the root to a node at

dlevel in the hierarchy. The X bits encode a path below dlevel, and are therefore not needed. For

some nodes, all of the G bits may not be present; nodes above dlevel have fewer than dlevel avail

able G bits. Take all available G bits and pad with 0 bits on the right until there is a multiple of

Inproc bits. Finally, take all groups of Inproc bits and exclusive-OR them together to obtain the

owning processor number.

Example: Consider a system where dlevel=l, lnproc=3 and ID=101100 (binary). First, we

excise the leading 1 bit, and take up to 7 {dlevel) bits to the right of it. There are only 5 bits to be

www.manaraa.com

76

had: 01100. We pad these bits with O's on the right until we have a multiple of 3 (Inproc) bits:
011000. This 6 bit number is broken into two groups of 3 (.Inproc) bits and XOR-ed together to

form the owning PE number: Oil © 000 Oil. Thus, PE 3 owns the hierarchy node.

5.5.2 Link heap

Principle 1 and Principle 3 effectively define exactly how the link heap must be decomposed.

Let us examine this decomposition further and evaluate its suitability in terms of ease of imple
mentation, efficiency, and load balance.

The links contained in the link heap are referenced by two processes: link refinement, and

hierarchical matrix-vector multiply. The link refinement process, as stated in the section titled

"Node hierarchy" on page 69, acts only on links which are local to a PE, and therefore imposes no

constraints upon the link heap decomposition scheme. The same section establishes that it is

impossible for a PE to uniquely own the hierarchy nodes at both ends of all links it owns. Some
amount of communication with other PEs is necessary. On the positive side, the ownership of hier

archy nodes, and therefore the hierarchy decomposition, does not change as the algorithm pro

ceeds. Link ownership and the link heap decomposition also do not change as a consequence.

There is some correlation between the load balance associated with the patch hierarchy and
the load balance associated with the link heap. Ideally, we want them both to be well load bal

anced. If each patch in the hierarchy with a constant number of other patches, then load balanc

ing the hierarchy would automatically load balance the link heap. This is not realistically the case

since geometrical effects and bright light sources cause a great number of links to concentrate on

a few patches in some circumstances. This will be illustrated in greater detail in the section titled
"Results and Analysis" on page 91.

5.6 Critical Operations
The previous section defines specific architectural mappings for the key data and control

structures. With this in place it is appropriate to expound on the exact structure of several critical

operations that the algorithm performs.

Until now, no mention has been made of any specific parallel architecture. It is now necessary

to do so because the machine architecture will have a large influence on the structure of the ker
nel operations to be discussed below. Differing machine grain sizes or memory models would war

rant alternate design choices for kernel algorithm structure.

The machine architecture chosen for the first port of the parallel hierarchical radiosity algo

rithm is the nCUBE 2. It uses a proprietary CISC microprocessor in a multiple-instruction multi

ple-data (MIMD) hypercube interconnect which is scalable from 4 to 8192 processing elements

(PEs). Each PE has a 64-bit internal architecture including registers, on-chip floating point hard

ware, and on-chip communications channels. Memory may range from 1 MB to 32 MB per PE.

Each PE is capable of a theoretical maximum floating-point performance of about 3 single-preci-

sion MPLOPS (measured in terms of multiply-add operations where multiply and add each count

www.manaraa.com

77

as one FLOP). The peak communication bandwidth between PEs is 2 MB per second in each direc
tion and on each communication channel.

5.6.1 Random all-to-all communication

The parallel link refinement, parallel hierarchical matrix-vector multiply, and reheapify oper

ations will all require sending and receiving randomly distributed short messages on all PEs.

These messages could be sent individually, and the hardware left to deal with routing them where

they need to go. Such a policy is disastrous for two reasons. First, short messages are notoriously

inefficient on the nCUBE and similar machines due to message startup latency. Long messages
are greatly preferable to short ones so that latency can be amortized over a longer actual trans

mission time. The second reason is contention. If thousands of short messages suddenly flooded
the communication channels of the hypercube, there would be many messages completing for the

same physical communication channels. Such contention is almost always disastrous, especially

when the communication pattern is random.

A better method is to alternately exchange packets between pairs of hypercube neighbors for
each hypercube dimension. This way, there is no contention whatsoever for communication chan

nels, and messages of the longest possible length are used.

Algorithm 12 takes as input two buffers, and the length of these buffers. The first buffer,

called dests, contains a destination PE number for the corresponding element in the keys buffer.
The algorithm assumes that it is called on all PEs at once, and that there are a power of 2 PEs,

but does not assume that the length of each buffer is the same on all PEs. As before, iproc is the
current PE number, and nproc is the number of PEs in the system.

Since all communication in Algorithm 12 is in the form of send-receive pairs, PEs come into

synchrony during its execution. Furthermore, if one PE is the source or destination of more mes

sages than its neighbor during a given phase, the other PE must wait for it to complete its trans

mission before it can continue. Thus load balance in terms of message volume is crucial to the

performance of Algorithm 12. In terms of the hierarchical radiosity algorithm, we must balance

the size of individual link heaps and the distribution of PEs to which the link owner connects. The

first condition will be satisfied by a well-distributed patch hierarchy. The second condition is diffi

cult to control, although alternatives exist and will be discussed later in this chapter.

5.6.2 Link refinement

Cases 1 and 3 in Table 5 introduce the basic structure of the link parallel link refinement pro

cess. As a starting point, let us consider the exact structure of the serial link refinement algo

rithm. Algorithm 13 is straightforward since all data necessary for link refinement are

immediately available. When the link heap is decomposed across a set of PEs, however, there are

cases where all data needed to split a link lies on more than one PE.

Step 1 provides the first situation where all PEs do not have all the data they need. The vari

able numlinks in the serial algorithm is simply the number of links in the one link heap. In a

parallel implementation, there is a link heap on every PE and each one potentially is a different

www.manaraa.com

78

{ Initialize bit mask for each hypercube dimension)
mask = floor (iiproc / 2)
{ Loop for each hypercube dimension }

While masktl
{ Separate dests and keys into two groups: one that)
{ stays on this PE, and one that should be sent off.)
j = k = 0

For each element i in dests
If (dests[i] AND mask) = (iproc AND mask)

destsIj] = dests[i]
keys[j] = Aeys[i]
j = j + 1

Else
tmpdests[k] = dests[i]
t/npAeys[k] = keys[i]
/c = ^ + 1

End if
End for
(Compute a hypercube neighbor.)
neighbor = iproc XOR mask
Send tmpdests to PE neighbor
Send tmpkeys to PE neighbor
Receive new dests from neighbor into end of dests vector
Receive new keys from neighbor into end of keys vector
Set length of dests and keys to j+number received from neighbor
m a s k = f l o o r { m a s k / 2)

End while

Algorithm 12: All-to-all communications

size. Global communication is therefore necessary to add all link heap sizes. Also, the variable

link_error is multifarious in a parallel implementation. It contains the estimated coupling

error in the link at the top of the link heap. Its value will potentially be different on each PE in a

parallel implementation. Since much global communication will be necessary inside the while
loop, it is necessary to have all PEs execute the body of the while loop whether or not they take

part in splitting any links (see Section 5.6.1). Therefore, the global maximum of link_error

must be computed, and used in the test in Step 1.

Steps 7-11 may always be performed without communication on the PE owning the link

because all composites and initial polygons reside on every PE. Note that this only consumes 0(1)

memory on each PE because the number of initial polygons is 0(1).

Steps 14-17 split into four cases in a parallel implementation. In the following, we shall repre

sent the left and right ends of a link with p and q, respectively. Recall that a PE owns a link if and
only if it owns the hierarchy node p. The four cases are described below and in Table 6

Case 1: A PE owns both daughters ofp as well as nodeg. This happy circumstance occurs only

when node p lies on or below dlevel, and the PE happens to own node q as well. A subdivision

www.manaraa.com

79

1. while (numlinks < reqlinks) and (link_error < solv_error)
2. Pop a link from the link heap
3. Set p = left end of link
4. Set q •= right end of link
5. I If the link is a composite self-link, split 3 ways.)
6. If (link is a self-link)
7 . Subdivide patch p
8. Form and initialize left<->left link
9. Form and initialize leftwright link
10. Form and initialize rightwright link
11. Push all non-zero links onto heap
12. (Decide whether to subdivide p or q.)
13. Else if

((p is composite) and (q is not composite)) or
{(area of p > area of q) and (p is composite)) or
((area of p > area of q) and (q is not composite))

14. Subdivide patch p
15. Form and initialize left(p)Wq link
16. Form and initialize right (p)<->q link
17 . Push non-zero links onto heap
18. Else
19. Subdivide patch q
20. Form and initialize pwleft (q) link
21. Form and initialize pwright (q) link
22. Push non-zero links onto heap
23. End if
24. Set link_error to error in the link at the top of heap
25. Set numlinks to the link heap size
26. End while

Algorithm 13: Serial link refinement

action requires no communication. Node p is simply subdivided, two new links formed, and then
pushed onto the local link heap.

Case 2: A PE owns both daughters of p but does not own q. In order to split the link, the PE

must acquire geometry data about node q from its owner. This involves a global communication

step, as many PEs may have links with similar requirements. Then the PE may split node/?, form

two new links using the newly-acquired geometry data about node q, and push them onto the local

link heap.

Case 3: A PE owns only one daughter of node p and owns node q. This case may only happen
when node p lies strictly above dlevel. In this case, the link between the owned daughter of p and

node q may be formed as in Case 1. The case of the unowned daughter is more complicated. Let us
denote the unowned daughter of node p as node r. This is the first case where splitting a link pro

duces a link which is not owned by the PE owning node p. In this case, the new link from r to g
will be owned by the PE which owns node r. Since the owner of node r has no information about

the original link from p to q, it must be sent a message informing it that it is the new owner of a

link from r to q\ thus, the link from r to g is migrated from the owner of node p to the owner of

www.manaraa.com

80

liable 6: Situations in splitting left link end in parallel

Ownership of daughters of left end

Owns both daughters of p
Does not own both

daughters of p

O
w

ne
rs

hi
p

o
f

right
en

d

Owns q
Case 1

• Local link subdivision
• Links remain local

Case 3
• One link remains local
• One link must migrate to

owner of unowned daugh
ter of p

O
w

ne
rs

hi
p

o
f

right
en

d

Does not own q

Case 2
• Get geometry informa

tion from owner of q
• Links remain local

Case 4
• Get geometry informa

tion from owner of q
• One link remains local
• One link must migrate to

owner of unowned daugh
ter of p

node r. Since the geometry of node q is available immediately for the link from r to g, we may send

it along with the migration message so the owner of r will not have to request geometry data on q

later.

Case 4: A PE owns only one daughter of node p and does not own node q. As with Case 3, this

case may only happen when node p lies strictly above dlevel. Even more communication is
required here than in Case 3. Since node q is not available to the owner of node p, a separate com

munication step is necessary to obtain geometry information for node q. The link from the owned

daughter of p may then be formed and pushed onto p's local link heap. The r to g link migration

may then be conducted exactly as in Case 3 to complete the link subdivision.

Steps 19-22 split into two cases. Since the left end of both refined links will still be p, they will

both reside on the PE which owns node p.

Case 1: The owner of node p also owns node q. In this case, no communication is necessary.
The PE simply subdivides node q, forms new links, and pushes them onto its local link heap.

Case 2: The owner of node p does not own node q. Here, the owner of p must send off a split

ting request to the owner of q and receive the geometrical information about the new daughter

patches. The new links may then be created and pushed onto the local link heap. One may ask

what happens when the daughters of node q are not owned by the owner of q. In this case, the

owner of q may still obtain valid geometrical information about both daughters, even though it

does not own them. Only geometrical information is needed to form new links; ownership-depen

dent information is only needed to update the link error. Link error estimates may be updated as

a body once a whole batch of links has been split. Updating the link error estimates is the topic of

the section titled "Reheapifying" on page 83.

www.manaraa.com

81

Wth the preceding issues discussed, we may now present the complete parallel link refine
ment algorithm. This algorithm takes place in nine phases. Most phases involve a global commu

nication step to route a list of packets between PEs using the algorithm described in the section

titled "Random all-to-all communication" on page 77. The variable batchsize is used in step 7 to

control how many links a PE splits at once. This quantity was discussed in the section titled
"Observations" on page 67.

1. Set numlinks to the global sum of all link heap sizes
2. Set link_error to global maximum link error
3. While {numlinks < reqlinks) and {link_error < solv_error)
4. (Phase 1: Separate a batch of links)
5. { into LOCAL, GEOM, and REMOTE lists.)
6. Initialize LOCAL, GEOM, and REMOTE lists to empty
7. For i = 1 to batchsize
8. Pop a link from the local link heap
9. If link is a composite self-link
10. Put the link on the LOCAL list
11. Else if both ends of link are owned by this PE
12. Put the link on the LOCAL list
13. Else if the left end of the link should be split
14. Put the link on the GEOM list
15. Else
16. Put the link on the REMOTE list
17 . End if
18. End for
19. { Phase 2: Work on the REMOTE list by sending splitting)
20. (requests to the PEs owning the "right" ends.)
21. For each link in REMOTE list
22. Synthesize a splitting request packet to owner of link
23. End for
24. Route all splitting packets to their owning PEs
25. (Phase 3: Service splitting requests and send)
26. { geometry information back to sending PE. }
27. For each splitting request packet just received
28. Subdivide the requested node
29. Synthesize a splitting reply with the new geometry data
30. End for
31. Route all splitting reply packets back to requesting PEs
32. { Phase 4: Split the REMOTE links using }
33. { the data received in phase 3.)
34. For each splitting reply packet just received
35. Form a new link from p to left(qr)
36. Push onto local link heap if coupling is nonzero
37. Form a new link from p to right(g)
38. Push onto local link heap if coupling is nonzero
39. End for
40. I Phase 5: Work on the GEOM list by sending geometry)
41. { requests to the PEs owning the right ends.)
42 . For each link in the GEOM list
43. Synthesize a geometry request packet to owner of right end
44. End for
45. Route all geometry request packets to their owning PEs
46. { Phase 6: Service requests for geometry data)
47. (and send back to the requesting PE.)

www.manaraa.com

82

48. For each geometry request packet just received
49. Pack up the geometry of the requested node
50. Synthesize a geometry reply packet
51. End for
52. Route all geometry reply packets back to the requesting PE
53. (Phase 7: Split the GEOM links using }
54. { data received in phase 6.)
55. For each geometry reply packet just received
56. Subdivide the left end, p, of the associated link
57. Form a link from left(p) to g
58. If left(p) is owned by this PE
59. Push link onto local link heap
60. Else
61. Synthesize a link migration packet
62. End if
63. Form a link from right(p) to g
64.
65. If right(p) is owned by this PE
66. Push link onto local link heap
67. Else
68. Synthesize a link migration packet
69. End if
70. End for
71. { Phase 8: Split links in the LOCAL list. }
72. For each link in the LOCAL list
73. If link is a self-link
74. Subdivide node at left end of link
75. Form left(p) to left(p) link
76. If left(p) is owned by this PE
77. Push link onto local link heap
78. Else
79. Synthesize a link migration packet
80. End if
81. Form left(p) to right(p) link
82. If left(p) is owned by this PE
83. Push link onto local link heap
84. Else
85. Synthesize a link migration packet
86. End if
87. Form right(p) to right(p) link
88. If right(p) is owned by this PE
89. Push link onto local link heap
90. Else
91. Synthesize a link migration packet
92. End if
93. Else if left end of link should be subdivided
94. Subdivide node p at left end of link
95. Form a link from left(p) to g
96. If left(p) is owned by this PE
97. Push link onto local link heap
98. Else
99. Synthesize a link migration packet
100. End if
101. Form a link from right(p) to g
102. if (right(p) is owned by this PE

www.manaraa.com

83

103. Push link onto local link heap
104. Else
105. Synthesize a link migration packet
106. End if
107. Else
108. Subdivide node g at right end of link
109. Form a new link from p to left(g)
110. Push onto local link heap if coupling is nonzero
111. Form a new link from p to right(g)
112. Push onto local link heap if coupling is nonzero
113. End if
114. End for
115. { Phase 9: Migrate links from previous phases.)
116. Route link migration packets to owning PEs.
117. For each link migration packet just received
118. Form a link from data in link migration packet
119. Push link onto local link heap
120. End for
121. Reheapify all local link heaps
122. Set link_error to global maximum link error
123. Set numlinks to the global sum of all link heap sizes
124 . End while

Algorithm 14: Parallel link refinement

Batch splitting of links is worthy of special mention in Algorithm 14. Not only does it obviate

the need for a single unified link heap, it has the side effect of making it unnecessary to compute

link error estimates for newly-created links. In Algorithm 13, we assume that each time a link is

pushed onto the link heap, a heap insertion is performed, thus preserving its heap structure.

Algorithm 14 does not need to know link error values until it is completely finished refining a

batch of links. Thus, the update of link error estimates is also batched as a consequence of split

ting links in batches.

5.6.3 Reheapiiying

As mentioned above, the parallel link refinement algorithm refines links in batches, and also

adds links to the local link heaps in batches. There is insufficient local data on a PE to form the

link error estimate when links are formed. Rather than perform a communication step when the

link is formed in order to update the link error estimate, we may delay all such communications

until the end of the batch and do them all at once. Recall from the section titled "Flaw in area/

form factor threshold reasoning" on page 55 that link error depends on the brightness and reflec

tivity of the patches at both ends of a link, as well as the link's coupling value.

As with Algorithm 14, Algorithm 15 assumes that all PEs execute it at the same time due to
the global communication. Link heap load balance and link connectivity influence the efficiency of

Algorithm 15 for the same reason they influence the efficiency of Algorithm 14.

5.6.4 Hierarchical vector operations

All operations on one hierarchical vector or between two hierarchical vectors are handled
largely the same as if the vectors were not hierarchical in nature. Only the nodes at the leaf level

www.manaraa.com

84

I Update the link error estimate for all links.)
For each link L in local link heap

Set p to node at left end of link L
Set q to node at right end of link L
{ Phase 1: Handle local links and synthesize)
{ brightness/reflectivity request to owner of q.)
If q is a local node

Update the link error estimate using local data.
Else

Synthesize a brightness request packet to owner of q
End if
Route brightness request packets to their owners
{ Phase 2: Service remote brightness requests.)
For each brightness request packet just received

Locate the requested hierarchy node
Synthesize a brightness reply packet to requestor

End for
Route brightness reply packets to their requestors
{ Phase 3: Update remainder of local links using)
{ remote brightness information just received. I
For each brightness reply packet just received

Update corresponding link's error estimate using remote data
End for

End for
{ Reheapify on the now-valid link error estimates)
Perform a standard reheapify operation on the local link heap

Algorithm 15: Parallel reheapify

of the hierarchy are operated upon. They represent the smallest level of subdivision of any poly

gon, and are treated as independent variables. As with operations on a traditional vector of num

bers, order is not important in a hierarchical vector operation. Any method of traversing the

hierarchy may be used so long as it visits each of the leaf nodes exactly once. Values at interior

hierarchy nodes are not needed by any routine other than the hierarchical matrix-vector multiply.

That routine updates interior hierarchy nodes for its one vector operand as needed.

The following operations on hierarchical vectors are necessary to carry out the hierarchical

radiosity algorithm: copy, initialize to a constant, add, subtract, multiply, invert (element-wise),

inner product, scale by a constant, and norm.

5.6.5 Hierarchical matrix-vector multiply

Figure 18 on page 65 introduces the idea of viewing the links as a dense coupling matrix.

Since both Jacobi and Conjugate Gradient iteration can be formulated in terms of matrix-vector

multiply operations, it makes sense to take advantage of the OiN) nature of such an operation (N

is the number of links). In order to derive an algorithm for performing a hierarchical matrix times

a hierarchical vector operation, let us manually work through an example using the matrix in Fig
ure 18. The matrix in Figure 18 is a hierarchical matrix of coupling factors. We will require a

matrix-vector multiplication by a matrix of form factors in the solution process.

www.manaraa.com

85

In the following, we shall perform the operation Fx-^b and denote by Ap the area of patch p,
by Cp^ the coupling between nodes p and ç, by Fp^ = Cp^/Ap the form factor from p to <7, and by
Xp the value of the hierarchical vector x at node p. Refer to the section titled "Patch couplings and
link splitting" on page 38 for a discussion of the mathematics behind link splitting. We begin with

the scalar equation

= FqqXQ. (59)

Since Fqq is not one of the final links in Figure 18, we split it on the left and right to yield the fol
lowing;

bj = FjjXj +^*12*2

62 = •^21*1 •^•^22*2* (60)

We now note that is not a final link, so we split Fjg on the right and fgi o" the left to yield:

61 = ^11*1+i^i5*5+ ^16*6

^5 ~ ^Gl^l +-^22*2

^6 ~ •'^61*1 •*'•^22*2• (61)

Note that when we split a link on the right, we expand one term into two terms in a single equa
tion. When we split a link on the left, we split one equation into two equations, each with the same

number of terms as the parent equation. There are now two terminal links in (61), Fjg in the 6^

equation, and F^•^ in the 6g equation. Note that C,g = Cgj. These links will not be split any fur

ther. We now split link f in the 6, equation on the left, and Fg, in the 6g equation on the right

to obtain

63 - ̂ 11*1 ••••'^35^5 + ̂ 16*6

64 = ^11*1 •*• ^45*5 ••• ^16*6

^6 ~ ^53*3 •*• ^64*4 •*• -^22*2

bg — F 61^1 22*2' (62)

Now, all that remains to be done is to split in the 63 equation on the right, and F^ in the 6g

equation on the left. This yields the final set of equations for leaf nodes:

63 = F y ^ X y + F ^ - j X - j + F 2 g X g + F ^ Q X Q

64 = -^11*1 ••••^45*5 ••••^16*6

bg = fg]%] +^'22*2

^7 ~ ^73*3 ^54*4 ••• -^22*2

bg = -^^83*3 ••• ^54*4 "•• -^22*2" (63)

www.manaraa.com

86

Suppose that PE 0 owns links C^, Cgy, Cgg, that PE 1 owns links Cgg, C^g, C45, and the hierar
chy from Figure 18 is distributed across two processors as shown in Figure 24.

PEG
Node

Node Nodo

Node Node

NodeV /Node

PEO : PE 1 „

Figure 24: Decomposition of example hierarchy

Now, let us examine each of the terms in (63). Note that the terms -Fn*! appear in

the equations for both 63 and 64. Also note that node 1 is an ancestor of nodes 3 and 4. The term

FggZg appears in the equations for all leaf nodes which are descendants of node 2. The term ^'54*4

appears in the equations for all leaf nodes which are descendants of node 5. In fact, all terms of

the form FpqXg are reused in all leaf descendants of node p. This observation follows directly from

(44) through (48).

Let us formulate the irradiance incident upon patch p as follows:

^P = Zp + ap + Pp (64)

where: ^ ^p(^q > link contributions at node p,
ge { L p]

{ L p } is the set of all nodes to which node p is linked,

is the sum of all link contributions of all ancestors of node p in the
hierarchy, and

Pp is the sum of all link contributions of all descendants of node p in the
hierarchy.

We may expand the and terms in the following way:

~ '^parent (j}) ^ ̂ parent (p)' (65)

Pp " ̂ left (p) bright (p) P/e/ï (p) ^ Prig A! (p) ' (66)

These recursions suggest the serial algorithm for hierarchical matrix-vector multiply shown in

Algorithm 16. A few words are in order about the notation used in this algorithm. We assume that

www.manaraa.com

87

each hierarchy node p stores several quantities: references to its mother and left and right daugh
ter nodes, denoted by p.parent, p.left, and p.right, respectively; a temporary hierarchical
vector element denoted by p.t; the multiplicand hierarchical vector element denoted by p.x; and
the resultant product hierarchical vector element denoted by p.v. In vector notation, the opera

tion performed by Algorithm 16 is <- Fx. The Hprep function in Algorithm 16 is used to set the

(Multiply hierarchical matrix contained in 'heap' by)
{ hierarchical vector 'x', and place the result in 'v' .)
MatVecMult (root, heap)
{

{ Prepare x vector for subsequent use.)
{ Initialize t temporary vector to 0.)
Hprep(root)
{ Accumulate link contributions into t.)
For each link L in heap

p.t += Fpq * q.x
if (p != g)

g.t += Fqp * p.x
End for
(Propagate t values up and down }
{ to form matrix-vector product.)
Prop{root)

)

Hprep(p)
(

p.t = 0.0
If p has daughters

Hprep{p.left);
Hprep{p.right) ;
p.x = (p.left.X * p.left.area +

p.right.X * p.right.area) / p.area;
End if

)
Prop(p)
(

p.v = p.t
If p has a parent

p.v += p.parent.v

End If
If p has daughters

Prop{p.left)
Prop(p.right)
p.t += p.left.t + p.right.t
p.v += p.t;

End if

I

Algorithm 16: Serial hierarchical matrix-vector multiply

hierarchical vector values of interior nodes to the area-weighted average of their daughters' val

ues. This area-based summarization is appropriate for the irradiance vector because it is a vector
of power densities rather than a vector of powers. Though we are only concerned with hierarchical

www.manaraa.com

88

vector values in the leaf nodes in the final solution, the matrix-vector multiply routine requires
valid data in all nodes of the multiplicand vector because the links do not just couple leaf nodes.

Making Algorithm 16 parallel is fairly straightforward. The three phases of Algorithm 16 are
multiplicand vector preparation, link contribution accumulation, and partial-product propaga

tion. All three phases require interprocessor communication, but they are independent. Let us
examine them each in turn.

First, we will examine the preparation phase. The basic operation in this phase is a postorder

tree traversal, with a node update involving data from each daughter. Below the distribution
level, dlevel, such an operation is possible with no interprocessor communication because entire

subtrees exist on one PE. Above dlevel, a PE owning node p only owns one of p's daughters. The

PE must therefore obtain data from the PE which owns the other daughter. Figure 25 shows with

PÈO PE4

ï>ÉO PE2 PE4

PEO PE3 PE4 PE7

PEO PE4 PE 1 PEG]PE2 PEG PE 3 PE7 PE4 PEO PE 5 PE 1 PEG Î>E2 PË7 ÏE3

Figure 25: Loci of communication in Hprep

thick lines the relationships between hierarchy nodes where communication must be performed.

A parallel version of the Hprep function is given in Algorithm 17. One might be curious why Algo
rithm 17 is in two parts. Most of the operations and most of the parallelism in the Hprep function

lies below dlevel. By first collapsing just up to dlevel, we are able to make all PEs perform useful

work in parallel in their owned subtrees. Once all PEs have done this, they may come back and

collapse data from the roots of the subtrees the rest of the way up the hierarchy.

Next, we shall examine the link contribution phase of Algorithm 16. Recall that a PE owns

only those links whose "left" end is also owned by that same PE. Also, observe from equation (63)

that for every form factor of the form Fp^ used, there is also an F^p used. These terms come from

the link contributions at the nodes connected by the link Cp^. Thus, for every link Cp^ owned by a

PE, there are two, not one, link contributions made by that link. There are three cases in the

inner loop of the link contribution phase:

www.manaraa.com

89

{ Collapse area-weighted sums of hierarch-)
(ical vector 'x' up the hierarchy.)
Hprep(root)
{

Hprep_subtrees(root)
Hprep_body(root)

)
{ Perform the collapse on and below dlevel. }
Hprep_subtrees(p)
{

p. t = 0.0
If p has daughters

Hprep_subtrees{p.left);
Hprep_subtrees{p.right);
If (node p is on or below dlevel) and (this PE owns node p)

p.x = {p.le ft.X * p.left.area +
p.right.X * p.right.area) / p.area

End if
End if

I

{ Perform the collapse strictly above dlevel.)
Hprep_body(p)
(

If (node p has daughters) and (node p is strictly above dlevel)
Hprep_body{p.right)
Hprep_body{p.left)

End If
If node p has daughters

If this PE owns the left daughter
Receive irradiance and area of right daughter from owner
p.x <= (p. left. X * p. left, area +

p.right.X * p.right.area) / p.area
Else if this PE owns the right daughter

Send irradiance and area of right daughter to owner of node p
End if

End if
)

Algorithm 17: Parallel hierarchical vector preparation

Case 1: A link is a composite self-link in which case all data necessary to calculate its contri

bution to the matrix'vector product are local to the PE. A self-link contributes to the partial prod
uct on the PE owning the link only.

Case 2: A link is not a self-link, but both ends of the link are local to the PE owning the link.

Here, too, all data to calculate the links contributions are local, but the link makes two partial

product contributions: one to the node at the left end of the link, and one to the node at the right

end of the link. In this case, exactly the same operations as in the kernel of the serial link contri

bution loop are executed.

www.manaraa.com

90

Case 3: A link is not a self-link and the node at the right end of the link is owned by another
PE. In this case, it is instructive to examine the two link contributions in the kernel of the serial
loop to see where the data to perform each calculation resides. The blocks labeled p in Figure 26
contain data which is owned by the owner of hierarchy node p. Similarly, the blocks labeled q con

tain data which is owned by the owner of hierarchy node q. Note that both Fp^ and F^p are
derived from the quantity Cp^, which is owned by the owner of node p. This layout of data sug

gests a three-phase update operation. First, the owners of all nodes p pack up Cp, and Xp values,

and send them to the owners of the corresponding ç's. These PEs perform the second accumula

tion in Figure 26, pack up values, and send them back to the owners of p. Finally, the owners of
p perform the first accumulation in Figure 26.

P q

Q P P

Figure 26: Locus of link contribution data

Combining all three cases leads us to the following algorithm for parallel link contribution
accumulation (Algorithm 18):

The final step in hierarchical matrix-vector multiply is the propagation of link contributions,

or partial products, up and down the hierarchy to form the final products. This process is very

similar to that already given in Algorithm 17 for hierarchical vector preparation, except that it

can be performed efficiently in one subroutine rather than two. The places where communication

must be performed are the same as those in Algorithm 17. The difference being that partial prod

ucts must be propagated both upward and downward rather than just downward.

5.6.6 Writing the answer file

As with most scientific applications, the time spent in I/O is no small portion of overall appli
cation time. Most applications, however, do not incur I/O of the same order of complexity as their

computational kernel. With hierarchical radisity, link subdivision, system solving, and HO are all

0{N). There exists the possibility that overall application time might be dominated by the typi

cally slower I/O operations.

The answer from a radiosity rendering (at least in this case) is a list of geometrical patches

together with their red, green, and blue brightness values. There is no prescribed order in which

these patches must be arranged in the answer file, so we may feel free to write them in whatever

order is most convenient.

www.manaraa.com

91

{ Accumulate partial products for hierarchical matrix-vector)
{ multiply into hierarchical vector ^t' at each node. }
Link_contrib(root, heap)
(

{ Phase 1: Local link resolution and remote request generation. }
For each link L in local link heap

Set p to left end of link
Set q to right end of link
If p == q

p.t += Cpq * p.x / p.area
Else if q is owned by this PE

p.t += Cpq * q.x / p.area
q.t += Cpq * p.x / q.area

Else
Synthesize contribution request packet to q with Cpq and p.x

End if
End for
Route all contribution request packets to their destinations
(Phase 2: Remote right-link-end accumulation and reply.)
For each contribution request packet just received

q.t += Cpq * p.x / q.area
Synthesize contribution reply packet back to p with q.x

End for
Route all contribution reply packets to their originators
{ Phase 3: Remote left-link-end accumulation)
For each contribution reply packet just received

p.t += Cpq * q.x / p.area
End for

)

Algorithm 18: Parallel link contribution accumulation

Only the leaf-level patches need be written because interior nodes in the hierarchy are simply

the union of two or more leaf-level patches. We also know that all leaf-level patches are uniquely

owned by a single PE due to the hierarchy decomposition scheme. It is, therefore, a simple matter

for each PE to traverse its hierarchy, and format output records from the leaf-level patches that it

owns. In the presence of a parallel I/O subsystem, all PEs would be able to write their completed

output records at once. In the absence of a parallel I/O subsystem, all output records may be con

catenated, and written to a single sequential filesystem. In both cases, output records must be
written in large blocks to achieve reasonable I/O throughput. The latter case is implemented here,

and even so presents no major bottleneck (See Figure 28, task "Storer").

5.7 Results and Analysis
The parallel hierarchical radiosity algorithm is implemented in approximately 7,000 lines of

C++ code on an nCUBE 2 parallel supercomputer. An object-oriented approach was used to com

partmentalize methods for dealing with key data structures such as: polygons, patches, compos

ites, the node hierarchy, the link heap, hierarchical vectors, and the hierarchical coupling matrix.

www.manaraa.com

92

{ Propagate partial products up and down the hierarchy)
(to form the final hierarchical matrix-vector product.)
Prop(p)

I
{ Preorder propagation of t values down into v.)
If node p is local

p.v = p.t
If (p has right daughter) and (right daughter is NOT local)

Send p.v value to owner of p.right
End if
If p has a parent

If p.parent is NOT local
Receive parent p.parent.v value from owner of p.parent
p.v += p.parent.V

End if
End if
{ Recursion)
If p has daughters

Prop(p.left)
Prop(p.right)

End if
{ Postorder propagation of t values up into t, and accum. into v.)
If node p is local

If (p has parent) and (p.parent is NOT local)
Send p.t to owner of p.parent

End if
If (p has right daughter) and (right daughter is NOT local)

Receive value of p.right.t from owner of p.right
End if
If p has daughters

p.t += p.left.t + p.right.t
End if
p.v += p.t

End if
)

Algorithm 19: Parallel partial product propagation

5.7.1 A visit from reality

Section 5.5 took great care to efficiently balance hierarchy nodes across a group of PEs, and

distributed the links in such a way as to minimize communication and spread them as evenly as

possible. This was done, however, in the absence of the knowledge of any specifics about the char

acter of how links will be split. As we shall see, the character of how links will be subdivided, and

the distribution of connectivities in the hierarchy, is highly data dependent. Figure 27 shows a

sample breakdown of the time spent by each PE in each of the nine phases of Algorithm 14. The
most striking feature in the graph is the disastrous imbalance in the amount of time spent in

phases 4 and 7, the remote and geometry-only link splitting phases. Similar imbalance exists in

the communications load across the PEs for other phases. Worse yet, no choice of dlevel or amount

of further link refinement evens out this imbalance.

www.manaraa.com

93

Cumulative time in Refine{) by Phases vs. PE Number

1 T T T

dz

T T
Triage

Send Split Req
Remote Patch Split
Remote Link Split

Send Geom Req
Service Geom Req
Geom Link Split

l\ Local Link Split
Migration

;/ \' //

V

=!= =>=

0 5 10 15 20 25 30
PE Number

Figure 27: Link contribution phases vs. processor for original algorithm

35

In order to fix the problem, we must understand its causes. In this case, it is caused by the

highly nonuniform nature by which links connect hierarchy nodes on different PEs. We have

endeavoured to balance the number of links that each PE owns through judicious choice of a hier

archy decomposition method coupled with link ownership based on the left ends of the links. Even

so, there is over a three to one ratio between the size of the largest and smallest node link heaps.

This creates load imbalance in both the solver and link refinement tasks.

Since it appears that Principle 3 and Principle 4 are costing more performance due to load

imbalance than they gain by locality of reference, let us consider alternatives that do not follow

the axiom. One way to even out the link heaps is to abolish Principle 4 and dlevel and continue

alternating ownership of hierarchy nodes down the hierarchy indefinitely. This would eventually

even out the local heap sizes, and the left-link-end distribution across the PEs without making
the communication any worse in the link refinement or link contribution algorithms. It would,

however, have a disastrous impact on the communications in the vector preparation and partial

product propagation algorithms. These algorithms rely on short messages at every hierarchy

node, and would thereby suffer greatly in terms of performance.

www.manaraa.com

94

A less disastrous option is abolish Principle 3, and spread the links out among the PEs evenly
regardless of hierarchy node ownership. This scheme has the benefit of being able to equalize all
local heap sizes and link refinement loads regardless of data-dependent effects. It also does not

affect the hierarchy decomposition or the communication load of either hierarchical vector prepa

ration or partial product propagation. It has the disadvantage of doubling the communication load

of link refinement and link contribution. But it is only a doubling. This contrasts with a scheme

which would much more than double the worst kind of communication traffic in vector prepara

tion and partial product propagation.

The remainder of this chapter will assume revised forms of the algorithms for parallel link

refinement, parallel link contribution accumulation, and parallel reheapification. These algo

rithms are generally simpler in form, but require more communication.

Algorithm 20 is the revised parallel link refinement algorithm. It has fewer phases than Algo
rithm 14, and a less confusing structure. At the same time, we may also pack up node brightness
and reflectivity data with all reply packets to be used in the link error estimate. This small addi
tion obviates the need for a reheapify step after every batch of link splittings.

Accumulating link contributions in parallel is a bit more tricky. The added complication is

that now, potentially three different PEs own the data necessary to calculate the link contribu

tions. One PE owns the coupling between nodes p and q, one PE owns node p, and one PE owns

node q. The solution shown in Algorithm 21 involves two steps. First, the PE owning a particular

link Cpç, will send the coupling and the values of p and q to the two PEs owningp and q. Then,
the PEs owning p and q will exchange their respective values of Xp and x^. The link contribution

may then be completed locally on the PEs owning/? and q using data from the two communication

steps.

(Accumulate partial products in each hierarchy node. }
{ Phase 1: Synthesize exchange packets to p and q.)
For each link L in local link heap

Synthesize an exchange packet to owner of each end of link
End for
Route exchange request packets to their owners
{ Phase 2 : Service exchange requests.)
For each exchange packet just received

Locate the requested hierarchy node
Synthesize a brightness packet to owner of other end of link

End for
Route brightness packets to their destinations
{ Phase 3: Calculate link contributions on p and q. }
For each brightness packet just received

Accumulate link contribution into local hierarchy node
End for

Algorithm 21: Revised parallel link contributions

www.manaraa.com

95

Set numlinks to the global sum of all link heap sizes
Set link_error to global maximum link error
While (numlinks < reqlinks) and (link_error < solv_error)

{ Phase 1: Remove a batch of links from the local heap.)
For i = 1 to batchsize

Pop a link from the local link heap
If the link's error is less than solv_error

Push link back onto local heap
Exit for loop

End if
Place the link into the list of links to be split

End for
(Phase 2: Synthesize splitting and geometry requests to the)
(owners of the nodes at both ends of each link to be split. |
For each link L to be split

If L is a self link
Synthesize a single splitting request to the owner

Else if the link should be split on the left
Synthesize a splitting request to owner of left end
Synthesize a geometry request to owner of right end

Else
Synthesize a splitting request to owner of right end
Synthesize a geometry request to owner of left end

End if
End for
Route all request packets to their destination PEs
{ Phase 3: Service requests for splittings and geometry data)
{ and pack up reply messages to the sending processor.)
For each request packet just received

If the request is a splitting request
Subdivide the requested hierarchy node
Pack up a splitting reply packet to the requestor

Else if the request is a geometry request
Pack up a geometry reply packet to the requestor

End if
End for
Route all reply packets back to the requesting PEs
I Phase 4: Split links using information from remote owners.)
For each reply packet just received

Locate the link to which this packet belongs and record it
End for
For each link in the list of links to be split

If the link is a self-link
Form three new link using data received from other PEs

Else if the link should be split on the left
Form two new links using data received from other PEs

Else
Form two new links using data received from other PEs

End if
Push the new links onto the local link heap

End for
End while

Algorithm 20: Revised parallel link refinement

www.manaraa.com

96

{ Update the link error estimate for all links.)
{ Phase 1: Synthesize exchange packets to p and q.)
For each link L in local link heap

Synthesize a brightness request packet to owner of left end
Synthesize a brightness request packet to owner of right end

End for
Route brightness request packets to their owners
{ Phase 2: Service brightness requests.)
For each brightness packet just received

Locate the requested hierarchy node
Synthesize a brightness reply packet to the requestor

End for
Route brightness reply packets to the requestors
(Phase 3: Update link error estimates. }
For each link L in local link heap

Update error estimate for L using brightness data just received
End for
{ Reheapify on the now-valid link error estimates)
Perform a standard reheapify operation on the local link heap

Algorithm 22: Revised parallel reheapify

Reheapifying is fairly straightforward, but again requires more communication than before.

Brightness request packets must be sent off to the PEs owning the hierarchy nodes at both ends of

all links in the local link heap. These owners must then send the brightness data back to the

requesting processor. Then, the error estimate may be updated for each link using the brightness

data received from other PEs. Algorithm 22 is the pseudocode for this revised version of parallel

reheapify.

V^th the link heap delocalized, any convenient method may be used to distribute the links

across the PEs. There are two important factors to consider when distributing the links: local link

heap size and link refinement load. The link heap sizes can be equalized very easily by calculating

the average local heap size, and redistributing excess links from PEs having a greater than aver

age number. Link refinement load is a bit more problematic. We can, however, note that links

which are closer to the top of a heap will probably be split sooner than link further down in the

heap due to their larger estimated link error. Thus, if the top several elements of all link heaps

are periodically shuffled randomly around the PEs, then the link subdivision load should be

equalized as well. The next section presents empirical evidence to support this claim.

5.7.2 Revised algorithm

Shown below in Figure 28 is the output from a typical run on 64 nCUBE processors using the

revised link heap decomposition strategy and Algorithm 20, Algorithm 21, and Algorithm 22.

Note the logarithmic decrease in the maximum link error, and the exponential increase in the

number of links as the algorithm progresses. The theoretical maximum performance for 64

nCUBE processors, in terms of MFLOPS (millions of floating-point operations per second) is

about 200 MFLOPS. We see the majority of the time spent solving the problem lay in the tasks

www.manaraa.com

97

Reader: Read 75 polygons from 'geom' file.
Distribution starts at level 12. Chunk size is 0.
Red / Grn / Blu Residual Link Resid Links Iterations

1 .OOe+10
1.90e+02
1.90e+02
1.90e+02
1.90e+02

1.90e+02

1.90e+02
1.90e+02
1.90e+02
7 .30e+01

30e+01
30e+01
30e+01
90e+01
90e+01
90e+01

1.20e-01
1.20e-01
1.20e-01
1.20e-01
l,20e-01
7.80e-02
7.80e-02

,80e-02

.80e-02
,80e-02
,80e-02

4.50e-02

4.50e-02

OOe+10
30e+02
30e+02
30e+02

30e+02
7.20e+01
7.20e+01
7.20e+01
7 .20e+01
7.20e+01
7.20e+01
7.20e+01
7.20e+01
7.20e+01
7.20e+01
2.20e+01

40e-01
, OOe-01
,OOe-01
,OOe-01
,OOe-01
OOe-01
.OOe-01
lOe-02

, lOe-02
, lOe-02
, lOe-02
lOe-02

, lOe-02

l.OOe+10
2.50e+02
2.50e+02
2.00e+02
2.00e+02
2.00e+02
2.OOe+02
8.70e+01
8.70e+01
8.70e+01
8.70e+01

50e+01

50e+01
50e+01
50e+01
50e+01

1.30e-01
1.30e-01
1.30e-01
8.80e-02
8.80e-02
8.80e-02
8.80e-02
8.80e-02
8.80e-02
2.90e-02
2.90e-02
2.90e-02
2.90e-02

3.8820e+03
3.8820e+03
2.4560e+02
1.5560e+03
2.2360e+02

9.1350e+02

1.9730e+02
3.1990e+02
1.9110e+02
2.9150e+02
8.6420e+01

1810e+02
3040e+01
3200e+02
2410e+01
95206+01

1.4390e-01
2.7070e-01
1.2510e-01
1.9330e-01
1.2190e-01
1.2260e-01
1.0060e-01

1.5770e-01
8.7630e-02
1.5480e-01
7.8170e-02
1.1360e-01

1.0460e-01

1002 RGB
1002
1139 B
1139
1198 GG
1198
1291 B
1291
1348 RR
1348
1828 BB
1828

2078 RR
2078
2167 GG
2167

551976 GGG
551976
630864 BBB
630864
646256 RRR
646256
778404 GGG
778404
890649 BBB
890649
994319 RRR
994319

1002190 RGGBB

Total form factor = 1.04743
Links in hierarchy = 1002190
Patches in hierarchy = 35715

Average links per node = 14.0306
Totally visible links = 788985
Partly visible links = 213205
Occluded links = 26986

Approximate memory usage: 56671052

1000000 interactions:
Task Seconds Operations

Reader
Setup

Solver
Storer

5.41
418.69
572.29
83.21

TOTALS 1079.60

3586
9024547348
250102686

7512750
9282166370

MFLOPS
0.000663

21.554335
0.437019
0.090282
8.597745

% of Time
0.5 %

38.8 %
53,0 %
7.7 %

100.0 %

Figure 28: Typical output from a 64 PE run

www.manaraa.com

98

Cumulative time in Refine () by Phases vs. PE Number

25 I f-T I I I I

20

.§ Triage
g Send Split/Geom Req
o 15 - Remote Reply
w Link Split

0)
> Reply to Reqs
4J (d
H 1 0

0
u

• >

v

10 20 30 40 50 60 7C

PE Number

Figure 29: Time spent in link refinement phases vs. processor

called "SetUp," and "Solver." SetUp corresponds to the link refinement process, and supporting

operations, and Solver corresponds to the iterative radiosity solution. Further accounting of the

Solver task shows that the vast majority of time spent in Solver is consumed by the link contribu
tion part of parallel hierarchical matrix-vector multiply shown in Algorithm 18. The apparently

poor showing in Figure 28 in terms of MFLOPS serves to emphasize the communications-inten

sive nature of the algorithm and the need for further investigation into the algorithm's behavior

in a practical setting.

The parallel code has been highly instrumented to collect link distribution statistics, node

hierarchy statistics, and timings for various sections of the code. Such data has been extremely
useful in locating sources of inefficiency, and in developing the aforementioned hierarchy decom

position strategies. In the following pages, graphs are presented which have been constructed

from this performance information.

The first performance graph, shown in Figure 29, shows the breakdown of time spent in the

parallel link refinement of Algorithm 14. By far the dominant phase is the one labeled "Link

Split." This phase is analogous to phases 4 and 7 in Algorithm 14. The next most dominant is the

www.manaraa.com

99

30
Link contribution phases vs. PE Number

I I I I

25

n
•o 20
o
o
0)
to

^ 15
•H
4J (t)

u 10

1
/•î\

vy

Compose msgs
Xq contrib
Accumulate
Send Cpq's

Exch contribs
Balancer

10 20 30 40

PE Number
50 6 0 7C

Figure 30: Time spent in link contribution phases vs. processor

phase labeled "Reply to Requests." This phase is analogous to steps 31 and 53 in Algorithm 14. All

other phases of link refinement consume less than two seconds each. In all cases, the load balance

is excellent.

Figure 30 shows a graph of the time taken by the various link contribution phases, as well as

time spent in communication, and time spent in the link load balancer. The first three symbols in
the legend correspond to the three phases of Algorithm 21. The next two symbols correspond to

the two message routing steps in the same algorithm. The final symbol corresponds to the total

amount of time spent in the link heap balancing algorithm. One may notice that the vast majority

of time consumed by the link contribution algorithm lay in the two communication phases. Load

balance appears to be good with a few minor exceptions.

The next graph, shown in Figure 31, is a profile of link connectivity for both the left and right

ends of all links. The left-link-end ownership is shown as "Links from," and right-link-end owner
ship is shown as "Links to." The graph was constructed by histogramming the owning PE number

of the left end of all links on all PEs. In other words, a point on the graph shows the number of

links for which the hierarchy node at the left (or right) end is owned by a certain PE. This graph

www.manaraa.com

100

Link connectivity vs. PE Number
5 0 0 0

Links from
Links to 4 5 0 0

4 0 0 0

3 5 0 0

3 0 0 0

o 2 5 0 0

2 0 0 0

1 5 0 0

1000

5 0 0

0
0 10 20 4 0 5 0

PE Number

Figure 31: Histogram of link connectivity vs. processor number

does not give any information on how well the local link heaps are load balanced. It indicates how

well the hierarchy distribution scheme has spread out node ownership among the PEs. Note that

the total number of links connecting to a PE is roughly constant except for PE 30. PE 30 owns a
bright light source which the hierarchy subdivision strategy has not distributed across the PEs.

Either a larger dlevel or a larger light source would more evenly distribute the links to this light

source.

Communication volume for one link refinement step is shown in Figure 32. Again, the com

munication is well-balanced with the exception of the load on PE 30, which has an inordinate

number of receives. This indicates that the link connectivity during the time of the refinement
step was more highly connected to a hierarchy node or nodes owned by PE 30. Methods for reduc

ing overall communication burden are presented in the next chapter.

The final performance graph plots the overall performance of the algorithm against the num

ber of processors used. The absolute performance is comparable over a range of problem sizes.

However, the performance scales somewhat less than linearly for the range of machine sizes

shown for a fixed-size problem, There are two main reasons for this. As the number of PEs

www.manaraa.com

101

Message Volume vs. PE Number for 1 Route Phase
1200

1100

1000

900
to

a) 800

•o
eu 700
M-l
0
w 600
0)

1 500
Z

400

300

200

100
0 10 20 30 40 50 60 7C

PE Number

Figure 32: Time spent in a single refine step vs. processor number

increases for a fixed size problem, the total amount of data that must be transmitted between PEs

increases due to an increased chance that the hierarchy nodes referenced by a PE's local links are

nonlocal. The second reason has to do with the nature of the communication pattern itself Sup

pose each PE wishes to send iV packets to other randomly selected PEs. The routing operation will

take place in Inproc stages with each stage moving an average of 0.5 xN packets between each

pair of PEs. Thus, the total time for a routing operation involving N packets will be

^rou(e = logo?) (67)

where a is the constant setup time for a message,

(3 is the time it takes to transmit one packet, and

p is the number of PEs used.

With a fixed-size problem, N gets smaller as the links get spread out over more PEs. Thus, we

may model the overall time take by the hierarchical radiosity algorithm as

I
i!

i l l I I
% I 11

I ! I ! I I
I !i

I I

Sends
Recvs

A
\ J

A

i\.; /• A
/ \ A / \ I I

hJJ 14

i i i i i

a. i
1i

H-\ / M

II il
I I
\ I

w V P

5N QN ,
T (p,N) =7+ — + (a + —)log(p)

P P
(68)

www.manaraa.com

102

MFLOPS vs. Number of PEs
100

lOK Links —
50K Links H—

lOOK Links -EH-
Linear

10

10 100 1
Number of PEs

Figure 33: Performance vs. number of PEs

where y is constant overhead time for the whole algorithm,

S is the time to process one link to completion, and

N is the number of links created.

The first term in (68) is constant time taken to load the program onto the PE array, read in the

problem geometry description, and create the initial hierarchy. Note that all these operations are

independent of the number of processors used, and the number of links to be created. The second

term accounts for all of the 0(N) work associated with setting up and creating link, traversing the

hierarchy, and solving the system. The third and final term accounts for the time spent routing

packets among the PEs during link subdivision, reheapify operations, and matrix-vector multiply.

www.manaraa.com

103

CHAPTER VI

SUMMARY AND FURTHER RESEARCH

6.1 Summary
In Chapter I, the fields of nonrealistic and realistic image synthesis are introduced, and two

key approaches to realistic image synthesis are also presented. Several parallel architectures

with applications to realistic image synthesis, and one parallel ray tracing code are also
described. Chapter II details the realistic image synthesis method of radiosity, and presents a way

of formulating the radiosity equation as a symmetric system. Various solution methods are ana
lyzed both theoretically and experimentally for their suitability to the radiosity application. In

Chapter III, the concept of a hierarchical method is introduced. The origins of the hierarchical
methods are traced through the astrophysics literature, and through their introduction into the

computer graphics community. Chapter IV presents several enhancements to the two existing
hierarchical radiosity methods and explains their significance and benefits. Finally, Chapter V

details the construction of a parallel code to implement the enhanced hierarchical radiosity

method on an nCUBE 2 parallel supercomputer. Performance is analyzed, shortcomings discov

ered, and methods to deal with them either proposed or implemented.

The renderer presented in Chapter V is the first and only parallel implementation of the hier

archical radiosity method to date to the knowledge of this author. As with many initial ventures

into making a new class of algorithm parallel, the absolute performance realized is not impres

sive. However, it deals with the key issues involved in making the algorithm parallel, and paves
the way for future analysis and improvements.

6.2 Further research
6.2.1 Optimizations to existing code

Clearly, there is still much room for improvement in the performance of the parallel hierarchi

cal radiosity implementation given in Chapter V. As it is an extremely communication-intensive

algorithm, the most gains will be had by optimizing the communication patterns, especially in the

linear equation solver. One can observe that there is significant reuse of values during the link

refinement, link contribution, and reheapify operations. The potential for a drastic reduction in
communication volume exists by exploiting this data reuse. At present, a message is being gener

ated for every reference to a particular Xp when, in fact, fewer messages would suffice.

6.2.2 Other areas of investigation

Many other avenues of research lay open to further scrutiny with the introduction of hierar

chical methods. Hierarchical methods have been applied to a rather narrow class of physical prob

lems to date (gravitational TV-body, and diffuse radiosity transport). Many other physical problems

www.manaraa.com

104

exist for which hierarchical solution methods might be beneficial such as finite element methods,
weather modeling, molecular modeling, and radar cross-section estimation. All of these problems
have feature sets which can be approximated to varying degrees of accuracy on multiple resolu

tion levels.

Furthermore, the specific interpretation of the hierarchical method as applied to the radiosity
problem is still not completely defined. Several specific issues are discussed below.

6.2.2.1 Exact coupling factors

All existing hierarchical radiosity methods approximate the coupling between patches to some
level or another. The quadruple integral for computing coupling factors, (14), is difficult to solve in

closed form for general surfaces. However, if the surfaces are sufficiently restricted in their gener

ality, a tractable integration problem might be found, perhaps with the aid of Stokes' theorem

[Sparrow 78]. If an expression for the exact coupling were found, then there would be no coupling

factor estimate error, and some other quantity would have to be found to drive the link refinement
process.

6.2.2.2 Discretization error

Discretization error is mentioned en passant in the section titled "Alternation of error types"

on page 46. This form of error has not been rigorously quantified by any radiosity methods to date,
and thus, is not well accounted for while balancing link error against solution error. If a tractable

expression for the exact coupling between two arbitrary patches is ever found, an understanding

of discretization error will become mandatory. No longer will coupling estimate error be able to

drive link refinement.

Discretization error is a measure of how well a continuously varying function (the continuous

radiosity solution) is approximated by a piecewise constant function (patch brightnesses). Thus, it

is related to patch geometry, the brightness gradient across a patch, and the error (if any) present

in couplings to the patch. The brightness gradient across a patch is, in turn, related to the cou

pling gradient across a patch. Even in the presence of exact coupling factors, this gradient will not

be known. Regardless of what factors influence discretization error, it is desirable to formulate it

in terms of power so that it may be compared against solution error for purposes of driving the

link refinement process.

One immediate application for discretization error measure is in dealing with the tartan arti

fact. Although rowsum correction minimizes the tartan artifact, a more elegant solution is desir

able. The tartan artifact is not caused by errors in coupling factor estimates. Even if exact patch

couplings are known, experiment has shown that the tartan artifact remains. The artifact is much
more heavily influenced by the choice of patch subdivision near corners than it is by coupling esti

mate errors.

An immediate consequence of knowing more about discretization error will come in the form

of more intelligent choices for patch subdivision. Hierarchical radiosity renderers now either sub

divide a patch equally into two or four subpatches. If more is known about how subdivision will

www.manaraa.com

105

affect the brightness solution, subdivision can be modified such that discretization error is
reduced with patch subdivision, not just coupling factor error. This may mean splitting a patch

into unequal areas, or along a different subdivision line, or both. Another important consequence
affects rendering curved surfaces. Presently, curves surfaces must be tessellated a priori, and

dealt with as a fixed set of flat polygons. A more efficient approach would be to represent a curved
surface as a single object, and tessellate it adaptively dwn'mg (Ae solution process based on the cur

rent viewpoint and lighting conditions. Such an approach will create far fewer tessellation poly

gons for a given level of discretization error and solution error than a flat a priori tessellation of

the same curved surface under the same ambient conditions.

6.2.2.3 Specularity

Perhaps the most interesting avenue of future research with the hierarchical radiosity

method lies in modeling specular effects. In order to obtain the data necessary data to evaluate a
specular shading model on a surface, interactions would have be between three patches, not just

two. This corresponds well with the notion of the three-point transport geometry shown in Figure
1 on page 4. A hierarchical scheme using these three-ended links, or bonks, would concentrate its

effort in areas of high specularity and high brightness while expending much less effort in areas

of low specularity or low brightness. This is similar to the existing diffuse method which concen

trates it effort in areas of high brightness while expending much less effort in area of low bright
ness.

www.manaraa.com

106

BIBLIOGRAPHY

[Appel 85] Appel, Andrew W,, "An Efficient Program for Many-Body Simulation," SIAM Journal

of Scientific and Statistical Computing, Vol. 6, No. 1, Januaiy 1985, pp. 85-103.

[Amoldi 87] Arnaldi, Bruno, Thierry Priol, and Kadi Bouatouch, "A New Space Subdivision

Method for Ray Tracing CSG Modelled Scenes," The Visual Computer, Vol. 3, No. 2, August

1987, pp.98-108.

[Arvo 87] Arvo, James, and David Kirk, "Fast Ray Tracing by Ray Classification," Computer

Graphics, Vol. 21, No. 4, 1987, pp. 55-64.

[Badouel 90] Badouel, Didier, Kadi Bouatouch, and Thierry Priol, "Ray Tracing on Distributed
Memory Parallel Computers: Strategies for Distributing Computations and Data," Technical

Report 508, Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), January
1990.

[Barnes 86] Barnes, Josh, and Piet Hut, "A Hierarchical 0(N log N) Force-Calculation Algorithm,"
Nature, Vol. 324, December 1986, pp. 446-449.

[Barr 84] Barr, Alan, "Global and Local Deformations of Solid Primitives," Computer Graphics,

Vol. 18, No. 3, 1984, pp. 21-30.

[Barr 86] Barr, Alan, "Ray Tracing Deformed Surfaces," Computer Graphics, Vol. 20, No. 4,1986,

pp. 287-296.

[Bjorstad 91a] Bjorstad, Petter E., and Erik Boman, "SLALOM: A Better Algorithm," Supercom-

puting Review, November 1991, pp. 57-62.

[Bjorstad 91b] Bjerstad, Petter E., and Erik Boman, "A New Algorithm for the SLALOM Bench

mark," Technical Report No. 55, Department of Informatics, University of Bergen, Norway,

May 1991.

[Blinn 82] Blinn, Jim, "A Generalization of Algebraic Surface Drawing," ACM Transactions on

Graphics, Vol. 1, No. 3, July 1982, pp. 235-256.

[Bronsvoort 85] Bronsvoort, Willem F., and Fepke Klok, "Ray Tracing Generalized Cylinders,"

ACM Transactions on Graphics, Vol. 4, No. 4, October 1985, pp. 291-303.

[Burger 89] Burger, P., and D. Gillies, "Rapid Ray-tracing of General Surfaces of Revolution,"iVew

Advances in Computer Graphics • Proceedings of Computer Graphics International '89, R. A.

Earnshaw and B. Wyvill ed., Springer-Verlag, New York, 1989, pp. 523-532.

[Carter 89] Carter, Michael B., "Ray Tracing Complex Scenes on a MIMD Concurrent Computer,"

Master's Thesis, Oklahoma State University, Stillwater Oklahoma, 1989.

www.manaraa.com

107

[Carter 90] Carter, Michael B., and Keith A. Teague, "The Hypercube Ray Tracer," Proceedings of
the Fifth Annual Conference on Distributed Memory Concurrent Computers, Spring, 1990.

[Carter 93a] Carter, Michael B., and John L. Gustafson, "The Symmetric Radiosity Formulation,"
Ames Laboratory Technical Report IS-J 4880, Ames, Iowa.

[Carter 93b] Carter, Michael B., and John L. Gustafson, "An Improved Hierarchical Radiosity

Method," Ames Lciorafoo" Technical Report IS-J 4881.

[Chen 89] Chen, Shenchang Eric, "A Progressive Radiosity Method and its Implementation in a

Distributed Processing Environment," Master's Thesis, Cornell University, January 1989.

[Chen 90] Chen, Hong, En-Hua Wu, "An Adapted Solution of Progressive Radiosity and Ray-Trac

ing Methods for Non-diffuse Environments," T. S. Chua ed., Tosiyasu L. Kunii ed., CG Inter

national '90: Computer Graphics Around the World, Springer-Verlag, Tokyo, 1990, pp. 477-

490.

[Cohen 85] Cohen, Michael E, and Donald P. Greenberg, 'The hemi-cube: A radiosity approach for
complex environments.," Computer Graphics, Vol. 19, No. 3, July 1985, pp. 31-40.

[Cohen 86] Cohen, Michael F., Donald P. Greenberg, David S. Immel, and Philip J. Brock, "An
Efficient Radiosity Approach for Realistic Image Synthesis," IEEE Computer Graphics and

Applications, Vol. 6, No. 2, pp. 26-30.

[Cohen 88] Cohen, Michael F., Shenchang Eric Chen, John R. Wallace, and Donald P. Greenberg,

"A Progressive Refinement Approach to Fast Radiosity Image Generation," Computer Graph

ics, Vol. 22, No. 4, Aug. 1988, pp. 75-84.

[Cook 82] Cook, Robert L., and Kenneth E. Tbrrance, "A Reflectance Model for Computer Graph

ics," ACM Ty-ansactions on Graphics, Vol. 1, No. 1, January 1982, pp. 7-24.

[Cook 84] Cook, Robert, Thomas Porter, and Loren Carpenter, "Distributed Ray Tracing," Com

puter Graphics, Vol. 18, No. 3,1984, pp. 137-145.

[Cook 86] Cook, Robert, "Stochastic Sampling in Computer Graphics," ACM Transactions on

Graphics, Vol. 5, No. 1, January 1986, pp. 51-72.

[Coquillart 85] Coquillart, Sabine, "An Improvement of the Ray-Tracing Algorithm," Proceedings

of Eurographics '85, C. E. Vandoni, ed., Elsevier / North-Holland, Amsterdam, 1985, pp. 77-

88.

[Cordonnier 85] Cordonnier, E., C. Bouville, I. Marchai, and J. L. Dubois, "Creating CSG Modelled

Pictures for Ray-Casting Display," Proceedings of Eurographics '85, C. E. Vandoni, ed.,

Elsevier/North-Holland, Amsterdam, 1985, pp. 171-184.

[Corman 90] Corman, Thomas H., Charles E, Leiserson, and Ronald L. Rivest, Introduction to

Algorithms, MIT Press, Cambridge, Massachusetts, 1990.

[Cottingham 89] Cottingham, M. S., "Efficiently Ray Tracing CSG Trees," Proceedings of Aus-

graph '89, Australasian Computer Graphics Association, 1989, pp. 269-274.

www.manaraa.com

108

[Deguchi 86] Deguchi, Hiroshi, et al., "A Tree-Structured Parallel Processing System for Image
Generation by Ray Tracing," Systems and Computers in Japan, Vol. 17, No. 12, 1986.

[Devillers 89] Devillers, Olivier, "The Macro-Regions: an Efficient Space Subdivision Structure for
Ray Tracing," Proceedings of Eurographics '89, W. Hansmann, F. R. A. Hopgood and W.

Strasser ed., Elsevier / North-Holland, Amsterdam, 1989, pp. 27-38.

[Drucker 92] Drucker, Steven M., and Peter Schroeder, "Fast Radiosity Using a Data Parallel
Architecture," Third Eurographics Workshop on Rendering, Bristol, UK, May 1992, pp. 247-

258.

[Edwards 82] Edwards, Bruce, "Implementation of a Ray-Tracing Algorithm for Rendering Super-

quadric Solids," Master's Thesis, Rensselaer Polytechnic Institute, Troy, New York, December

1982.

[Filip 89] Filip, Daniel J., "Blending Parametric Surfaces," ACM Transactions on Graphics, Vol. 8,

No. 3, July 1989, pp. 164-173.

[Fontes 84] Fontes, Steve, "Ray Tracing Surfaces of Revolution," Master's Thesis, Worcester Poly

technic Institute, 1984.

[Fuchs 77] Fuchs, H., et al., "Fast Spheres, Shadows, Textures, Transparencies, and Image

Enhancements in Pixel-Planes," ACM Computer Graphics, Vol. 19, No. 3, July 1985, pp. 111-
120.

[Fuchs 89] Fuchs, Henry, et al., "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics Sys

tem Using Processor-Enhanced Memories," Computer Graphics, Vol. 23, No. 3, July 1989.

[Fujimoto 86] Fujimoto, Akira, Tkayuki Tanaka, and Kansei Iwata, "ARTS: Accelerated Ray-Trac-

ing System," IEEE Computer Graphics and Applications, Vol. 6, No. 4, April 1986, pp. 16-26.

[Fussell 88] Fussell, Donald, and K R. Subramanian, "Fast Ray Tracing Using K-D Trees," Tech

nical Report No. TR-88-07, Department of Computer Sciences, University of Texas at Austin,

March 1988.

[Gervautz 86] Gervautz, Michael, "Three Improvements of the Ray Tracing Algorithm for CSG
Trees," Computers and Graphics, Vol. 10, No. 4, 1986, pp. 333-339.

[Getto 89] Getto, P., "Fast Ray Tracing of Unevaluated Constructive Solid Geometry Models,"

Advances in Computer Graphics - Proceedings of Computer Graphics International '89, R. A.

Earnshaw and B. Wyvill, ed.. Springer-Verlag, New York, 1989, pp. 563-578.

[Giger 89] Giger, Christine, "Ray Tracing Polynomial Tensor Product Surfaces," Proceedings of

Eurographics '89, W. Hansmann, F. R. A. Hopgood and W. Strasser, eds., Elsevier / North-Hol

land, Amsterdam, 1989, pp. 125-136.

[Glassner 84] Glassner, Andrew, "Space Subdivision for Fast Ray Tracing," IEEE Computer

Graphics and Applications, Vol. 4, No. 10, October 1984, pp. 15-22.

www.manaraa.com

109

[Goldsmith 87] Goldsmith, Jeffrey, and John Salmon, "Automatic Creation of Object Hierarchies
for Ray Tracing," IEEE Computer Graphics and Applications, Vol. 7, No. 5, May 1987, pp. 14-

20.

[Golub 89] Golub, Gene H., and Charles F. Van Loan, Matrix Computations, The Johns Hopkins

University Press, Balimore, 1989.

[Greengard 87] Greengard, L., and V. Rokhlin, "A Fast Algorithm for Particle Simulations," Jour

nal of Computational Physics, Vol. 73, 1987, pp. 325-349.

[Greengard 88] Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT

Press, Cambridge, MA, 1988.

[Guitton 91] Guitton, P., J. Roman, and Christophe Schlick, "Two Parallel Approaches for a Pro
gressive Radiosity," Second Eurographics Workshop on Rendering, Barcelona, Spain, May

1991.

[Gustafson 91] Gustafson, John L., Diane Rover, Stephen Elbert, and Michael Carter, "The Design
of a Scalable, Fixed-Time Computer Benchmark," Journal of Parallel and Distributed Com

puting, Vol. 12, 1991, pp. 388-401.

[Hanrahan 83] Hanrahan, Pat, "Ray Tracing Algebraic Surfaces," Computer Graphics, Vol. 17, No.
3, 1983, pp. 32-90.

[Hanrahan 91] Hanrahan, Pat, David Salzman, and Larry Aupperle, "A Rapid Hierarchical Radi

osity Algorithm," Computer Graphics, Vol. 25, No. 4, July 1991, pp. 197-206.

[Hart 89] Hart, John, Daniel Sandin, and Louis Kauffman, "Ray Tracing Deterministic 3-D Frac

tals," Computer Graphics, Vol. 23, No. 3,1989, pp. 298-296.

[He 91] He, Xiao D., Kenneth E. Torrance, François X. Billion, and Donald P. Greenberg, "A Com

prehensive Physical Model for Light Reflection," Computer Graphics, Vol. 25, No. 4, July 1991,

pp. 174-186.

[Hermitage 90] Hermitage, Shirley A., Terrance L. Huntsberger, and Beverly A. Huntsberger,

"Hypercube Algorithm for Radiosity in a Ray Tracing Environment," Proceedings of the 5th

Distributed Memory Computing Conference, David W. Walker and Quentin F. Stout, eds.,

IEEE Computer Society Press, Washington, April 1990, pp. 206-211.

[Immel 86] Immel, David S., Michael F. Cohen, and Donald P. Greenberg, "A Radiosity Method for
Non-Diffuse Environments," Computer Graphics, Vol. 20, No. 4, August 1986, pp. 133-142.

[Jansen 86] Jansen, F. W., "Data Structures for Ray Tracing," Data Structures for Raster Graph
ics, L. R. A. Kessener, F. J. Peters, and M. L. P. van Lierop, eds.. Springer-Verlag, New York,

1986, pp. 57-73.

[Jessel 91] Jessel, J. P., M. and Paulin, R. Caubet, "An Extended Radiosity Using Parallel Ray-

Traced Specular Transfers," Second Eurographics Workshop on Rendering, Barcelona, Spain,

May 1991.

www.manaraa.com

110

[Joy 86] Joy, Kenneth, and Murthy Bhetanabhotla, "Ray Tracing Parametric Surface Patches Uti
lizing Numerical Techniques and Ray Coherence," Computer Graphics, Vol. 20, No. 4, 1986,

pp. 279-285.

[Kajiya 82] Kajiya, James, "Ray Tracing Parametric Patches," Computer Graphics, Vol. 16, No. 3,
1982, pp. 245-254.

[Kajiya 83a] Kajiya, James, "New Techniques for Ray Tracing Procedurally Defined Objects,"
Computer Graphics, Vol. 17, No. 3,1983, pp. 91-102.

[Kajiya 83b] Kajiya, James, "New Techniques for Ray Tracing Procedurally Defined Objects,"

ACM Transactions on Graphics, Vol. 2, No. 3, 1983, pp. 161-181.

[Kjyiya 84] Kajiya, James, and Brian von Herzen, "Ray Tracing Volume Densities," Computer
Graphics, Vol 18, No. 3, 1984, pp. 165-174.

[Kajiya 85] Kajiya, James, "Anisotropic Reflection Models," Computer Graphics, Vol. 19, No. 3,

1985, pp. 15-21.

[Kalra 89] Kalra, Devendra, and Alan Barr, "Guaranteed Ray Intersections with Implicit Sur

faces," Computer Graphics, Vol. 23, No. 3, 1989, pp. 297-306.

[Kay 86] Kay, Timothy, and James Kajiya, "Ray Tracing Complex Scenes," Computer Graphics,

Vol. 20, No. 4, 1986, pp. 269-278.

[Kunii 85] Kunii, Tbsiyasu, and Geoff Wyvill, "CSG and Ray Tracing Using Functional Primi

tives," Computer-Generated Images: The State of the Art, N. Magnenat-Thalmann and D.

Thalmann, ed., Springer-Verlag, New York, 1985, pp. 137-152.

[Lee 85] Lee, Mark, Richard Redner, and Samuel Uselton, "Statistically Optimized Sampling for

Distributed Ray Tracing," Computer Graphics, Vol. 19, No, 3, 1985, pp. 61-67.

[Lischinski 90] Lischinski, Daniel, and Jakob Gonczarowski, "Improved Techniques for Ray Trac

ing Parametric Surfaces," The Visual Computer, Vol. 6, No. 3, June 1990, pp. 134-152.

[MacDonald 88] MacDonald, David, "Space Subdivision Algorithms for Ray Tracing," Masters

Thesis, Department of Computer Science, University of Waterloo, Spring 1988.

[Montani 90] Montani, C., and R. Scopigno, "Ray Tracing CSG Trees Using the STICKS Represen

tation Scheme," Computers and Graphics, Vol. 14, No. 3/4,1990, pp. 481-490.

[du Montcel 85] du Montcel, Bruno Tezenas, and Alain Nicolas, "An Illumination Model for Ray

Tracing," Proceedings of Eurographics '85, C. E. Vandoni ed., Elsevier / North-Holland,

Amsterdam, 1985, pp. 63-75.

[Naylor 86] Naylor, Bruce, and William Thibault, "Application of BSP Trees to Ray-Tracing and

CSG Evaluation," Technical Report GIT-ICS 86103, School of Information and Computer Sci

ence, Georgia Institute of Technology, Feb. 1986.

www.manaraa.com

I l l

[Nishita 85] Nishita, Tbmoyuki, and Eihachiro Nakamae, "Continuous Tone Representation of
Three-Dimensional Objects Taking Account of Shadows and Interreflection," Computer

Graphics, Vol. 19, No. 3, July 1985, pp. 23-30.

[Nishita 90] Nishita, Tomoyuki, Thomas W. Sederberg, and Masanori Kakimoto, "Ray Tracing
Trimmed Rational Surface Patches," Computer Graphics, Vol. 24, No. 3, 1990, pp. 337-345.

[Parke 80] Parke, F. I., "Simulation and Expected Performance Analysis of Multiple Processor Z-

Buflfer Systems," Computer Graphics, Vol. 21, No. 3, July 1980, pp. 48-56.

[Potmesil 89] Potmesil, Michael, and Eric M. Hoffert, "The Pixel Machine: A Parallel Image Com
puter," Computer Graphics, Vol. 23, No. 3, July 1989.

[Priol 88] Priol, Thierry, and Kadi Bouatouch, "Experimenting With a Parallel Ray Tracing Algo
rithm on a Hypercube Machine," Proceedings of Eurographics '88, Elsevier / North-Holland,

Amsterdam, 1988, pp. 248-259.

[Priol 89] Priol, Thierry, and Kadi Bouatouch, "Static Load Balancing for a Parallel Ray Tracing
on a MIMD Hypercube," The Visual Computer, Vol. 5, No. 1/2, March 1989, pp. 109-119.

[Purgathofer 91] Purgathofer, Werner, and Michael Zeiller, "Fast Radiosity by Parallelization," K.

Bouatouch ed., C. Bouville ed.. Photorealism in Computer Graphics (Proceeding Eurographics

Workshop on Photosimulation, Realism and Physics in Computer Graphics, 1990), 1991, pp.

173-183.

[Rubin 80] Rubin, Steven, and Turner Whitted, "A 3-Dimensional Representation for Fast Ren

dering of Complex Scenes," Computer Graphics, Vol. 14, No. 3,1980, pp. 110-116.

[Sederberg 84] Sederberg, Thomas, and David Anderson, "Ray Tracing of Steiner Patches," Com

puter Graphics, Vol. 18, No. 3, 1984, pp. 159-164.

[Sederberg 86] Sederberg, Thomas W, and Scott R. Parry, "Free-Form Deformation of Solid Geo

metric Models," Computer Graphics, Vol. 20, No. 4, August 1986, pp. 151-160.

[SGI 92] IRIS Crimson Technical Report, Silicon Graphics Computer Systems, Mountain View,

California, July, 1992.

[Shirley 90] Shirley, Peter, "A Ray Tracing Method for Illumination Calculation in Diffuse-Specu

lar Scenes," Proceedings of Graphics Interface '90, Canadian Information Processing Society,

Toronto, Ontario, May 1990, pp. 205-212.

[Shirley 91] Shirley, Peter, Kelvin Sung, and William Brown, "A Ray Tracing Framework for Glo

bal Illumination Systems," Proceedm^s of Graphics Interface '91, Canadian Information Pro
cessing Society, Calgary, Alberta, June 1991, pp. 117-128.

[Siegel 81] Siegel, Robert and John R. Howell, Thermal Radiation Heat Transfer, Hemisphere

Publishing Corporation, Washington, 1981.

[Sillion 89] Sillion, François, and Claude Puech, "A General Two-Pass Method Integrating Specu

lar and Diffuse Reflection," Computer Graphics, Vol. 23, No. 3, July 1989, pp. 335-344.

www.manaraa.com

[Billion 91] Billion, François X., James R. Arvo, Btephen H. Westin, and Donald P. Greenberg, "A
Global Illumination Solution for General Reflectance Distributions," Computer Graphics, Vol.

25, No. 4, July 1991, pp. 187-196.

[Slalom 91] The SLALOM Benchmark Report, Scalable Computing Laboratory, Ames Laboratory,

Ames, lowa, USA, November 1991.

[Smits 92] Smits, Brian E., James R. Arvo, and David H. Salesin, "An Importance-Driven Radios-
ity Algorithm," Computer Graphics, Vol. 26, No. 2, July 1992, pp. 273-282.

[Sparrow 78] Sparrow, E. W., and R. D. Hess, Radiation Heat Transfer, Hemisphere Publishing

Corporation, Washington, D. C., 1978.

[Sweeney 86] Sweeney, Michael, and Richard Bartels, "Ray Tracing Free-Form B-Spline Bur-
faces," IEEE Computer Graphics and Applications, Vol. 6, No. 2, February 1986, pp. 41-49.

[Thirion 90] Thirion, Jean-Philippe, "Tries: Data Structures Based on Boolean Representation for

Ray Tracing," Proceedings of Eurographics '90, Elsevier / North-Holland, Amsterdam, 1990.

[Toth 85] Toth, Daniel, "On Ray Tracing Parametric Surfaces," Computer Graphics, Vol. 19, No. 3,

1985, pp. 171-179.

[van Wijk 84a] van Wijk, Jarke, "Ray Tracing Objects Defined by Sweeping Planar Cubic Splines,"

ACM Transactions on Graphics, Vol. 3, No. 3, July 1984, pp. 223-237.

[van Wijk 84b] van Wijk, Jarke, "Ray Tracing Objects Defined by Sweeping a Sphere," Computers

and Graphics, Vol. 9, No. 3, July 1985, pp. 283-290.

[Wallace 87] Wallace, John R., Michael F. Cohen, and Donald P. Greenberg, "A Two-Pass Solution

to the Rendering Equation: A Synthesis of Ray Tracing and Radiosity Methods," Computer

Graphics, Vol. 21, No. 4, July 1987, pp. 311-320.

[Ward 88] Ward, Gregory J., Francis M. Rubinstein, and Robert D. Clear, "A Ray Tracing Solution

for Diffuse Interreflection," Computer Graphics, Vol. 22, No. 4, August 1988, pp. 85-92.

[Ward 92] Ward, Gregory J., "Measuring and Modeling Anisotropic Reflection," Computer Graph

ics, Vol. 26, No. 2, July 1992, pp. 265-272.

rWestin 92] Westin, Stephen H., James R. Arvo, and Kenneth E. Torrance, "Predicting Reflectance

Functions from Complex Surfaces," Computer Graphics, Vol. 26, No. 2, July 1992, pp. 255-264.

rWhitted 80] Whitted, Turner, "An Improved Illumination Model for Shaded Display," Communi

cations of the ACM, Vol. 23, No. 6, June 1980, pp. 343-349.

[Wyvill 85] Wyvill, Geoff, and Tosiyasu Kunii, "A Functional Model for Constructive Solid Geome

try," The Visual Computer, Vol. 1, No. 2, 1985, pp. 3-14.

[Wyvill 86] Wyvill, Geoff, Tosiyasu Kunii, and Yasuto Shirai, "Space Division for Ray Tracing in

CSG," IEEE Computer Graphics and Applications, Vol. 6, No. 4, November 1990, pp. 13-32.

www.manaraa.com

113

[Youssef 86] Youssef, Saul, "A New Algorithm for Object Oriented Ray Tracing," Computer Vision,
Graphics, and Image Processing, Vol. 34, No. 2, May 1986, pp. 125-137.

www.manaraa.com

114

APPENDIX

The source code to an enhanced serial radiosity renderer is published in this appendix. It is
intended to give the reader a basic understanding of the implementation details involved in a

hierarchical radiosity code. Source to the parallel hierarchical radiosity renderer is too lengthy
and machine specific to be useful here. The following source is written in ANSI standard C in sev

eral source modules. Each source module is delineated in the text by a section heading.

www.manaraa.com

115

A.1 Header file slaLh

/•**** J
/* File: slal.h
/* Version: %G% %W%
/* Type definitions for all data types used in the SLALOMS3 benchmark
/**•**/

•ifndef
•define

SLAL H
"slal 'h"

•include
•include
•include
•include
•include

•ifndef
•define
•define
•endif

<stdio.h>
<stdlib.h>
<math.h>
<string.h>
<sys/time.h>

TRUE
FALSE 0
TRUE (! (FALSE))

Vector[3];

0, links = 1,
2, vectors = 4,
8, matrix 16,
32, isect = 64

/**/
/* Forward type declarations
/**/
typedef struct Node Node;
typedef struct Link Link;
typedef struct HierVec HierVec;
typedef struct LinkQueue LinkQueue;
typedef struct LinkHeap LinkHeap;

/**/
/* Typedefs
/**/
typedef float
typedef enum (

none =
refine =
iterate •=
hierarchy»

) debugflag;
typedef enum {

visible, partial, blocked
) Visible;
typedef enum {

composite,
) NodeType;

/**/
/* Constants
/**/
•define
•define
•define
•define
•define
•define
•define
•define

patch

defchunksize
deflinkchunksize
maxhiervec
maxpoly
maxvert
eps
big
PI

1024
16
24
1024
1024
((float)le-5)
((float)le+10)
((float)3.1415926)

/**/
/* Externals
/**/
extern debugflag debug;
extern int solelemR,

solelemG,

www.manaraa.com

116

solelemB;
extern int rhoelemR,

rhoelemG,
rhoelemB;

extern LinkHeap *heap;

/**/
/* Queue of Links
/**/
struct LinkQueue

Link
int

I;

•p;
head,
tail,
alloclen;

/**/
/* Priority queue of Links
/**/
struct LinkHeap {

Link
int

*p;
tail,
alloclen;

};

/ * * /
/* Definition of the parent node type.
/**/
struct Node (

/* Data structure linkage */
Node *left, *right;
Node *parent;

/* Vector storage */
float t;
float e[maxhiervec] ;

/* Node geometry */
Vector normal;
Vector vertex[4];
Vector center;
float area;

/* Miscellaneous */
int id;

);

/* Pointer to Link storage.
/* Index of head element.
/* Index of tail element.
/* Allocated list length.

/* Pointer to Link storage.
/* Index of tail element.
/* Allocated list length.

/* Pointer to daughter patches.
/* Pointer to mother patch.

/* Temporary storage.
/* Storage for HierVecs.

/* Normal of the patch in 3-space.
/* Vertices of the polygon.
/* Center of the patch in 3-space.
/* Magnitude of normal vector.

/* Unique node ID number.

* /
* /
* /
V

*/
*/
*/

*/
*/

*/
*/

*/
V
*/
*/

*/

/**/
/* HierVec type. This object is, in fact, merely a front-end to the
/* procedural hierarchical vector operations defined as part of the Node type.
/**/
struct HierVec {

int index; /* Index of vec. elem. in patch hier. */
Node *hier; /* Hierarchy in which this vector is */

/* stored. */
);

/**/
/* Type of elements which will be used in queue and heap types below
/**/
struct Link (

Node *p, *q;
float cpq, epq, err;
Visible vis;

);

•endif

www.manaraa.com

117

A.2 Header file proto.h

/**/
/* File: proto.h
/* Function prototypes for SLALOM93 benchmark
/* Version: %G% %W%
/**/

•ifndef
•define

_PROTO_H
PROTO H~

/**/
/* Prototypes for major SLALOM functions
/**/
int main (int argc,

char *argv[]);

void Usage (char *argv[]);

void Meter (int nlink,
double ops [) ,
double sec[j);

void Reader (Node *moan,
int rho[1,
int emiss[],
Node **polygons
int *npoly,
double *work);

void Refsol (Node *moan,
int rho[),
int emiss[],
int x[] ,
int reqlinks,
int area,
int p.
int rowsums,
double sec[],
double work[1,
int stats[));

float Solver (Node *moan,
int rho,
int emiss,
int X,
float epsilon.
int area,
int P/
int rowsums.
double *work);

void Storer (Node *moan.
int x[l,
Node **polys.
int npoly.
double *work);

void What (int nlink.
double ops [] ,
double sec []);

double When (void);

void Writegeom (Node *P.
FILE *fp.

/* Argument count */
/* Argument strings */

/* Argument strings */

/* Number of links to create */
/* FLOPS for each phase */
/* Time for each phase */

/* Pointer to root hier node */
/* Reflectivity HierVecs */
/* Emissivity HierVecs */
/* Dyn. alloc, list of poly* */
/* Number of polygons read */
/* IFLOPs to do the job */

/* Pointer to root hier node */
/* Reflectivity HierVecs */
/* Emissivity HierVecs */
/* Solution radiosities */
/* Requested number of links */
/* Hierveo of patch areas */
/* Hiervec temporary */
/* Coupling matrix row sums */
/* Seconds for each phase */
/* FLOPS for each phase */
/* Link statistics */

/* Pointer to root hier node */
/* Reflectivity HierVec */
/* Emissivity HierVec */
/* Solution radiosities */
/* Required solution accuracy*/
/* Hiervec of patch areas */
/* Hiervec temporary */
/* Coupling matrix row sums */

*/

/* Pointer to root hier node */
/* Solution radiosities
/* List of polygon pointers
/* Number of initial polys
/* #FLOPs to do the job

/*
/*
/*

No. of links in solution
FLOPS for each phase
Seconds for each phase

/* Timer call

*/
*/
*/
*/

*/
*/
*/

*/

/* Pointer to hierarchy node */
/* Pre-opened answer file */

www.manaraa.com

118

void Write]

float Cfest

void Refine

int do. /* Red radiosity slot number */
int dl. /* Blu radiosity slot number */
int d2, /* Grn radiosity slot number */
double *work); /* #FLOPs to do the job */

(FILE *fp) ; /* Interactions file */

(Node *moan, /* Pointer to root hier node */
Node *P. /* Pointer to hierarchy node */
Node /* Pointer to hierarchy node */
float *err. /* Est. of error in coupling */
Visible *vis. /* Visibility of the link */
double *work, /* #FLOPs to do the job */
int stats[]); /* Link statistics */

(Node *moan. /* Pointer to root hier node */
int *reqlinks. /* # of links after refine */
float epsilon. /* Req'd refinement accuracy */
double *work. /* #FLOPs to do the job */
int stats[)); /* Link statistics */

/**/
/* LinkQueue functions
/**/
LinkQueue *Lqalloc(void) ; /* Construct a new LinkQueue. */
void Lqfree(LinkQueue*) ; /* Destroy a Linkqueue. */
void Lqenqueue(LinkQueue*, Link) ; /* Enqueue an element at head. */
Link Lqdequeue(LinkQueue *); /* Dequeue an element from tail. */
int Lqlength(LinkQueue *); /* Return # of Links in queue. */
void Lqextend(LinkQueue *, int); /* Extend queue to a new size. */
void Lqprint(LinkQueue *); /* Pretty-print the queue. */

/**/
/* Priority
/**/
LinkHeap
void
void

Link

void
void
void
void
void

queue of Links

*Lhalloc(void);
Lhfree(LinkHeap*);
Lhenqueue(LinkHeap*,Link,

Lhdequeue(LinkHeap *,

Lhclear(LinkHeap *);
Lhheapify(LinkHeap *,
Lhrebuild(LinkHeap *)
Lhextend(LinkHeap *,
Lhprint(LinkHeap *);

/* Construct a new LinkHeap.
/* Destroy a LinkHeap.

int[));
/* Enqueue an element at head,

int[]);
/* Dequeue an element from tail.
/* Empty out the heap,

int); /* Reheapify due to new element.
; /* Rebuild heap from scratch,
int); /* Extend the heap to new size.

/* Pretty-print the heap.

*/
*/

*/
*/
*/
*/
*/
*/

/**/
/* Link functions
/**/
void Lupdate(Link *);

/**/
/* Hierarchy node functions
/**/
Node *Nodealloc(NodeType);
void Nodefree(Node *);
void Nodecopy(Node *, Node *
void Nodeinit(Node *);
int Getlevel(Node *);
int Numelem(Node *);
int Numleaves(Node *);
void Subdiv(Node *);
void Makepoly

(Node *, Vector, Vect
void Makecomp(Node*, Node*,
Visible Occlusion

(Node *moan. Node *p

/* Update epq element based on current */
/* values in solelem[RGB] and cpq. */

/* Allocate a new node structure.*/

);
/* Free up a tree of Nodes,
/* Copy a node,
/* Initialize center,normal,etc.
/* Return Node's level in hier.
/* Return the number of nodes.
/* Return number of leaf nodes.
/* Subdivide a polygon.
/* Init. polygon from 4 verts,

or. Vector, Vector);
Node*); /* Init. composite from 2 polys.

/* Determine if p visible from q.
Node *q, double *work);

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

www.manaraa.com

119

void Nodeprint (Node *, int, int.) ; /* Pretty-print a hiervec.

/**/
/* Hierarchical
/**/

vector functions

int
void
void
void
void
void
void

void
void
void
void
float
void
void
void
void
float
float
void
void
void

void

Halloc (void);
Hfree (int d);
Hprep(Node *, int);
Prop(Node *, int);
Propup(Node *, int);
Propdn(Node *, int);
MatveemuIt

(Node *nd, int b, int x);
Hadd(Node*, int, int, int);
Hsub(Node*, int, int, int);
Hmult(Node*, int, int, int);
Hscale(Node*,int,int,float);
Hdot(Node *, int, int);
Hneg(Node *, int, int);
Hinvert(Node *, int, int),
Hcopy(Node
Hfill(Node
Hnorm(Node *,
Hinfnorm(Node
Hgetarea(Node
Hprint(Node *
Hmma

(Node *, int,
Hmsmsmn

(Node *, float

int,
int,
int)
*, int)
*, int)
int) ;

int)
float),

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

int, int, int);

*, int, int, int.

/**/
/* 3-veotor functions
/**/
void
void
float
void

Vzero (Vector);
Vprint(Vector);
Vmag(Vector);
Vscale(Vector, Vector, float),

/ * * /
/* Macros
/**/
•define
•define
•define
•define
•define
•define
•define
•define

Allocate vector and return •. */
Free a vector. */
Bubble area-weighted sums up. */
Trial optimization of up & dn */
Third phase of matveemuIt. */
Fourth phase of matvecmult. */
Multiply coupling matrix by */

vector X giving vector b. */
Vector d +- vector s. */
Vector d +» vector a. */
Vector d *= vector s. */
Vector d *= scalar s. */
Return dot product of d and s.*/
Vector d - -d. */
Vector d - 1.0 / vector d. */
Vector d = vector s. */
Vector d - constant. */
One norm of a vector. */
Infinity norm of a vector. */
Get area of each node into vec*/
Pretty-print a vector. */

int, int, int);

/* Assign zero to a vector. */
/* Pretty-print a vector. */
/* Magnitude of vector */
/* Scale vector by a scalar. */

Fmax (a, b)
Fmin (a, b)
Vcopy(d,a)
Vdif f (d, a, b)
Vsum(d,a,b)
Vdot(a,b)
Vmagsq(a)
Vcross(d,a,b)

(((a) > (b)) ? (a) : (b))
(((a) < (b)) ? (a) : (b))
(d[0]=a[0], d[l)-a[l], d[2]-a[2])
(d(01-a[01-b[01, d[ll-a[ll-btl], d[21-a[2]-b[2])
(dtOl-alOl+btO], d[l]-a[l]+b[l), d[2]-a[2]+b[2])
(a[0]*b[01 + a[l]*b[l] + a[2]*b[2))
(a[0)*a[0] + a[l]*a[l] + a[2]*a[2])
(d[01 - a[l]*b[2) - b[l]*a[2), \
d[l] = b(01*a[2) - a[0]*b[21, \
d[2] •= a[0]*b(ll - b[0]*a[l])

•endif PROTO H

www.manaraa.com

120

A.3 Source file slal.c

/ * * /
/* File: slal.c
/* High-level driver functions for the SLALOM93 benchmark.
/* Version: %G% %W%
/**/

•include "slal.h"
•include "proto.h"

/**/
/* Global variables:
/**/
debugflag debug = none;

extern char *optarg;
extern int optind;

int
main (int argc, char *argv[))
(

double ops[4], /* Operation count for each task */
sec[4]; /* Seconds for each major task */

int Inkreq, /* Requested number of links */
c;

/* Parse the command line flags. */
while ((c = getopt(argc, argv, "d;">) != EOF)

switch (c) (
case 'd':

if ((debug «=• atoi (optarg)) 0)
debug = (debugflag) Oxffffffff;
break;

default:
case '?':

Usage (argv);
break;

}

/* Make sure that the syntax of invocation is OK. */
if (argc-optind != 0) {

Usage (argv);
exit (1);

)

printf("How many links? ");
scanf("%d", &Inkreq);

1

Meter(Inkreq, ops, sec);
What (Inkreq, ops, sec);

void
Usage (char *argv[])
(

printf (
printf (
printf (
printf (
printf (
exit (1)

Usage: %s [-d debuglevel]\n", argv[0));
none = 0, links - 1,\n");
refine - 2, vectors " 4,\n");
iterate = 8, matrix = 16,\n");
hierarchy- 32, isect - 64\n");

void
Meter (int Inkreq, double ops(], double sec[])

www.manaraa.com

121

double
Node
Node
int

work;
•moan;
*polygons[maxpoly];
area,
emiss[3],
npoly,

P,
rho[3],
rowsums,
stats [3],
x[3];

/* Create root hierarchy node, and all HierVecs needed by Reader(). */
stats[visible] = stats[partial] = stats[blocked] - 0;
moan •> Nodealloc (composite) ;
heap - LhallocO;
Lhextend(heap, Inkreq);
x[0)
x[l]
x[2]
rho[0]
rho[1)
rho[2]
emiss[0]
emiss[1]
emiss[2]
area

P
rowsums

Halloo 0
Halloc()
Halloc 0
Halloc ()
Halloc ()
Halloc 0
Halloc ()
Halloc()
Halloc 0
Halloc()
Halloc 0
Halloc()

/* Read in patch geometries from file "geom". */
sec [0] " When () ;
Reader (moan, rho, emiss, polygons, Snpoly, Swork);
sec[0] = When() - sec[0];
ops[0] - work;

/* Set up the patch couplings and solve for RGB patch radiosities. */
Refsol (moan, rho, emiss, x, Inkreq, area, p, rowsums, sec, ops, stats);

/* Write out some useful statistics. */
Hfill(moan, p, 1.0);
Matvecmult(moan, rowsums, p) ;
Hgetarea(moan, area);
printf ("Total form factor •= %g\n",

Hdot(moan, rowsums, area) / Hdot(moan,
printf(" Links in hierarchy = %d\n",
printf(" Elements in hierarchy = %d\n",
printf(" Patches in hierarchy = %d\n",
printf("Average links per element = %g\n",

((float) heap->tail / Numelem(moan)));
printf (" Totally visible links •= %d\n",
printf(" Partly visible links = %d\n",
printf (" Occluded links •= %d\n",
printf("Approximate memory usage: %d bytes.\n",

(int) (Numelem(moan) * sizeof(Node) + heap->tail * sizeof (Link)));

p, area));
heap->tail);
Numelem(moan));
Numleaves(moan));

stats[visible]);
stats[partial]);
stats[blocked]);

/* Write radiosities and patch geometries to the 'answer' file. */
sec [3] = When () ;
Storer(moan, x, polygons, npoly, Swork);
sec [3] •= When () - sec [3];
ops[3] = work;

/* Release dynamically allocated storage.
Lhfree(heap);
Hfree(x[0]);
Hfree(x[1]);
Hfree(x[2]);

* /

www.manaraa.com

122

Hfree(rho[0]);
Hfree(rho [1]) ;
Hfree(rho [2]) ;
Hfree(emiss[0])
Hfree(emiss[1])
Hfree(emiss[2 j)
Hfree(area);
Hfree(p);
Hfree(rowsums);

)

void
What(int Inkreq, double ops[), double sec[])
{

int i ;
float totaltime;
double totalwork;
static char *names[] = ("Reader", "SetUp", "Solver", "Storer");
static char *format = "%6.6s%8.2f%17.Of%14.6f%10.If %%\n";

)

/* Print out a summary of timing information for this run. */
totaltime = sec[0] + sec[1] + sec[2] + sec[3];
totalwork = ops[0j + ops[1] + ops[2] + ops[3];
printf("\n%d links:\n", Inkreq);
printf(" Task Seconds Operations MFLOPS
for (i - 0 ; i < 4 ; i++) {

printf(format, names[i], sec[i), ops[i],
(ops[i] / sec[i]) * ie-6, 100.0 * sec[i] / totaltime);

)
printf(format, "TOTALS", totaltime, totalwork,

(totalwork / totaltime) * le-6, 100.0);

%% of Time\n");

/**/
/* Read in the geometry description file and produce a hierarchy of
/* rectangles and triangles below the root node 'moan'.
/**/
void
Reader(Node *moan, int (rhohv) [3] , int (emshv)[3],

Node **polygons, int *npoly, double *work)
{

FILE
LinkQueue
Link
Node
Vector

unsigned

char

*infile;
*queue;
Ink;
*p, *q, *P;
rho, ems,
vtmp,
vlist[maxvert);
rO, rl, r2,
eO, el, e2,
nvert,
vnum,
vO, vl, v2,
lineno •= 0;
buff[257],

v3,

word[32];

(*work) = 0;

*npoly •= 0;
queue = Lqalloc();

/* Get the slot numbers of each component of reflectivity and emissivity.
rO - rhohv[0];
rl = rhohv[1j;
r2 = rhohv[2);
eO - emshv[0];
el = emshv[1];
e2 = emshv[2];

www.manaraa.com

123

/* open the geometry file. */
if ((infile = fopen("geom", "r")) — NULL) (

fprintf(stderr, "Unable to open 'geom' file.Xn");
exit (1) ;

)

/* Read and create the polygons. */
while (fgets(buff, 256, infile) NULL) {

lineno++;

/* Parse the first word. */
if (sscanf(buff, "%s", word) !- 1) {

fprintf(stderr, "Bogus line number %d.\n", lineno);
exit (1) ;

)

/* Chec)c for a comment indicator. */
if (wordtO] -«• '#') (

continue;
)

/* Check for each type of leading word allowed. */
if (strcmp(word, "polyhedron") 0)

/* Reset vertex list. */
nvert = 0;

else if (strcmp(word, "polygon") — 0) (
/* Idiot check. */
if (nvert < 3) (

printf("Reader: Too few vertices defined. Line %d.\n", lineno);
exit (1);

)
if (*npoly >•= maxpoly) (

printf("Reader: Too many polygons; Maximum - %d.\n", maxpoly);
exit (1) ;

1

/* Parse the remainder of the line. */
if (sscanf (buff, "%*s%d%d%d%d %f%f%f %f%f%f", SvO, Svl, &v2, &v3,

&rho[0], Srho[l], Srho[2], &ems[0], Sems[l], &ems[2]) !- 10) (
printf("Reader: Bad polygon format. Line %d.\n", lineno);
exit (1);

)

/* Check the vertex indices. */
if (vO >- nvert | | vl >= nvert | | v2 >= nvert | | v3 >•= nvert) {

printf("Reader: Bad vertex number. Line %d.\n", lineno);
exit (1) ;

}

/* Range check the reflectivity. */
if (rhofO) < .001-eps || rho[l] < .001-eps || rho[2] < .001-eps ||

rhoioj > .999+eps || rhoîl) > .999+eps || rho[2] > .999+eps) (
printf("Reader: Reflectivity out of range. Line %d.\n", lineno);
printf (" Must be in the range 0.001 <•= rho <= 0. 999\n") ;
exit (1);

}

(*work) +» 6;

/* Install the polygon. */
P = Nodealloc(patch);
Makepoly(P, vlist[vO], vlist[vl], vlist[v2], vlist[v3]);
(*work) += 180; /* Makepoly */
if (P->area •== 0.0) {

fprintf(stderr, "Reader: Bad polygon at line %d.\n", lineno);
exit (1);

)

P->e[r0] = rho[0];

www.manaraa.com

124

P->e[rl] - rho[l]
P->e[r2) rho[2]
P->e[eO] - ems t 0j
P->e[eli - ems 11]
P->e(e2] - ems[2]
Ink.p - P;
Lqenqueue(queue, Ink);
polygons 1*npolyi = P;
(*npoly)++;
(*work) += 4 + 24; /* constructor + setnormal() */

)
else if (Stromp(word, "vertex") — 0) {

/* Parse the remainder of the line. */
if (sscanf(buff, "%*s%d%f%f%f", Svnum,

&vtmp[01, Svtmp[l], Svtmp[2]) !«> 4) {
printf("Reader: Need x,y,z vertex coords. Line %d.\n", lineno);
exit (1) ;

}

/* Check the vertex number. */
if (vnum !» nvert) (

printf("Reader: Need sequential vertex numbers. Line %d.\n",
lineno);

exit (1);
)

/* Check for vertex list full. */
if (nvert >= maxvert) {

printf("Reader: Vertex list full. Line %d.\n", lineno);
exit (1);

)

/* Add the vertex to the vertex list. */
Vcopy(vlist[nvert], vtmp);
nvert++;

1
else {

printf("Reader: Line number %d is total garbage.\n", lineno);
exit (1);

)
)
printf("Reader: Read %d polygons from 'geom' file.\n", *npoly);

/* Form the hierarchy above the polygons. */
while (Lqlength(queue) > 2) {

Ink - Lqdequeue(queue);
p = Ink.p;
Ink = Lqdequeue(queue);
q = Ink.p;
Ink.p = Nodealloc(composite);
Makecomp(lnk.p, p, q);
Lqenqueue(queue, Ink);

)
Ink = Lqdequeue(queue);
p = Ink.p;
Ink = Lqdequeue(queue);
q - Ink.p;
moan->left = p;
moan->left ->parent •» moan;
moan->right = q;
moan->right->parent = moan;
Nodeinit(moan);
Hprep (moan, emshv[0]);
Hprep (moan, emshv(1]);
Hprep (moan, emshv[2));
Hprep (moan, rhohv[0]);
Hprep (moan, rhohv[1));
Hprep (moan, rhohv[2]);

www.manaraa.com

125

)

/* Debug dump of the completed hierarchy. */
if (debug & hierarchy) {

printf("INITIAL HIERARCHY :\n");
Nodeprint(moan, 2, 0);

)

(•work) += (*npoly - 1) * 14; /* Composite constructors. */
Lqfree(queue);

/**/
/* Solve for the equilibrium balance of energy transfer in the scene using
/* the diagonally preconditioned conjugate gradient method. The matrix of
/* form factors is implied by the links in the 'moan' hierarchy.
/**/
void
Refsol(Node *moan, int (rho)[3), int (emiss)[3], int (x)[3], int reqlinks,

int area, int p, int rowsums, double sec[], double ops[], int stats[])

double timel,
time2,
work;

Vector soleps;
Visible vis;
float Inkeps,

err,
t;

int m,
iterates,
numlinks;

Link Ink;

work - 0.0;
sec[1] - sec[2] = 0.0;
ops[1j " ops[2] - 0.0;
timel •= When () ;

Lhclear(heap); /* Clear the heap, and prime it for the solution phase.
solelemR = x[0];
solelemG " x[1] ;
solelemB = x[2];
rhoelemR = rho[0];
rhoelemG = rho[1);
rhoelemB = rho[2);
vis = partial;
Ink.p = moan;
Ink.q - moan;
Ink.cpq = Cfest(moan, moan, moan, &err, Svis, &work, stats);
Ink.err = err;
Ink.vis •= vis;
Lhenqueue(heap. Ink, stats);
Hfill(moan, x[0], 1.0);
Hfill(moan, x[l], 1.0);
Hfill(moan, x[2i, 1.0);
Hprep(moan, x[0]);
Hprep(moan, x[lj);
Hprep(moan, x[2j);
Inkeps = big;
soleps[0] = big;
soleps[11 = big;
soleps[2] = big;

/* Do an initial subdivision. */
Lhrebuild (heap);
work +-= 22 * heap->tail;
Inkeps = heap->p[01.epq; •
numlinks =1;

www.manaraa.com

126

Refine(moan, (numlinks, Inkeps, &work, stats);
printf("Made %d initial links.\n", numlinks);
Hcopy(moan, x[0], emiss[0]);
Hcopy(moan, x[lj, emiss[1));
Hcopy(moan, x[2j, emiss[2]);
Hprep(moan, x[0]);
Hprep(moan, x[l]);
Hprep(moan, x[2]);
Lhrebuild(heap) ;
work += 22 * heap->tail;
Inkeps •» heap->p[0] .epq;

/* Iterate until we have the right number of links. */
printf ("\n/ ERROR ESTIMATES --\\\n") ;
printf(" Red | Green | Blue | Link # of Links ErrProd\n");

while (numlinks < reqlinks) {

t = Fmax(soleps[0], Fmax(soleps[1),
Fmax(soleps[2), Inkeps))) * numlinks;

printf("%7.le | %7.1e | %7.1e | %7.1e %9d %7g ",
soleps[0], soleps[1], soleps[2],
Inkeps, numlinks, t);

iterates = 0;
for (m = 0 ; m < 3 ; m++) (

if (soleps[m] >= Inkeps) (
ops[1] += work;
worlt " 0;
sec [1] += (time2 «= When ()) - timel;
timel = time2;
soleps[m] = Solver(moan, rho[m], emiss[m], x[m],

Inkeps, area, p, rowsums, Swork);
ops[2] +" work;
work = 0;
sec[2] += (time2 = When()) - timel;
timel = time2;
Hprep(moan, x[m]);
iterates = 1;

)
I
printf("\n");
if (iterates) {

Lhrebuild(heap);
work += 22 * heap->tail;

}
else {

numlinks = reqlinks;
/* Force stopping criterion to numlinks in the last Refine call,
t = Fmax(soleps[0], soleps[1]);
t = Fmax(t, soleps[2]);
Refine(moan, Snumlinks, t, &work, stats);

}
Inkeps •= heap->p(0] .epq;

}

/* Finishing iteration. */
t = Fmax(soleps[0], Fmax(soleps[1],

Fmax(soleps[2], Inkeps))) * numlinks;
printf("%7.le | %7.1e | %7.1e | %7.1e %9d %7g ",

soleps[0), soleps[1], soleps[2],
Inkeps, numlinks, t);

for (m = 0 ; m < 3 ; m++) {
ops[1] += work;
worlc = 0;
sec[1] += (time2 = When()) - timel;
timel = time2;
soleps[m] •= Solver(moan, rho[m|, emiss[m], x[m),

www.manaraa.com

127

Inkeps, area, p, rowsums, Swork);
ops[2] +- work;
work - 0;
sec[2] +- (time2 " When()) - timel;
timel - time2;

)
printf("\n\n");

printf("Number of patches in hierarchy - %d\n", Numleaves(moan));

ops[1] +- work;
sec[1i +- When() - timel;

)

/ * * /
/* StorerO output is designed to be order-independent; use a sort
/* utility to restore the file to an easily-readable form.
/**/
void
Storer(Node *moan, int x[), Node **polygons, int npoly, double *work)

int i, k;
static char ''fintl = "%4d vertex % Id %9.4f %9.4f %9.4f\n";
FILE *fp; /* Output file pointer. */

(*work) = 0;

/**/
/* Write patch geometry and radiosities to 'answer' file. */
/ * * /
if ((fp " fopen ("answer", "w")) •== NULL) {

fprintf(stderr, "Unable to open 'answer' file.\n");
exit (1) ;

)

/* Write out the vertices of each polygon. */
fprintf(fp, "%d polygons:\n", npoly);
for (i = 0 ; i < npoly ; i++)

for (k " 0 ; k < 4 ; k++)
fprintf(fp, fmtl, i + 1, k, polygons[i]->vertex[k][0],

polygons[ij->vertex[kj[l],
polygons[i]->vertex[k][2]);

(*work) += 168 * npoly;

fprintf(fp, "%d patches:\n", Numleaves(moan));
Writegeom(moan, fp, x[0), x[l), x[2], work);
fclose(fp);

/**/
/* Write patch interactions to 'links' file.
/**/

if ((fp = fopen("links", "w")) == NULL) {
fprintf (stderr, "Unable to open 'linlcs' file. \n") ;
exit (1) ;

}

if (heap->tail > 10000)
fprintf(fp, "0 links:\n");

else {
fprintf(fp, "%d links:\n", heap->tail);
Writelinks(fp);

}
fclose(fp);

/**/
/* Recursive part of Storer() that traverses the patch hierarchy and
/* writes out the geometry and radiosity information associated with
/* each leaf patch.

www.manaraa.com

128

/**/
void
Writegeom(Node *p, FILE *fp, int dO, int dl, int d2, double *work)

static char *fmt2 = "%16d %4d answer rgb %9.4f %9.4f %9.4f\n";
static char *fmt3 - "%16d %4d vertex %ld %9.4f %9.4f %9.4f\n";
int i;
static int polynum, patnum;

/* Set patch number to zero if this routine has just been called. */
if (p->parent -= NULL)

patnum = 1;
if (p->id > 0 &S p->parent && p->parent->id <- 0)

polynum - p->id;

/* Recur to the left and right if body node, else write out the patch. */
if (p->left)

Writegeom(p->left, fp, dO, dl, d2, work);
else (

fprintf(fp, fmtZ, patnum, polynum, p->e[dO], p->e[dl], p->e[d2]);
for (i "= 0 ; i < 4 ; i+ +)

fprintf(fp, fmt3, patnum, polynum, i,
p->vertex[i][0], p->vertex[i][1], p->vertex[i][2]);

patnum++;
(*work) += 210;

}
if (p->right)

Writegeom(p->right, fp, dO, dl, d2, work);
)

/**/
/* Recursive part of Storer() for writing out an exhaustive list of
/* links between patches. This routine is present for debugging
/* purposes only.
1**1
void
Writelinks(FILE *fp)
(

Link *P;
int i;
static char *fmt4 =

"%2d %4d -=> %4d %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %6.3f %d\n";

for (i = 0, P = heap->p ; i < heap->tail ; i++) (
fprintf(fp, fmt4, Getlevel(P->p) + Getlevel(P->q),

P->p->id, P->q->id,
P->p->center(0], P->p->center[1], P->p->center[2],
P->q->center[0], P->q->center[1], P->q->center[2j,
P->cpq, P->vis);

P++;
}

}

double
When()
(

struct timeval tp;
gettimeofday(Stp, NULL);
return ((double) tp.tv_sec + (double) tp.tv_usec * le-6);

www.manaraa.com

129

A.4 Source file solver.c

/**/
/* File: solver.c
/* Link refinement, coupling factor estimation, and system solver for SLALOM93.
/* Version: %G% %W%
1**1

•include
•include

"slal.h"
"proto.h"

/ * * /
/* Refine Node p against Node q. The two Nodes are adaptively subdivided
/* such that the requested number of interactions (reqlinks) are formed.
/* If reqlinks is passed in as -1, then subdivision is performed until all
/* coupling factors in excess of "big" are drained from the heap.
/ * * /
void
Refine(Node *moan,
{

float

Node
Link
Visible

int *reqlinks, float epsilon, double *work, int stats [])

opq, epq,
cpql, cpq2, cpq3,
Cplq, Cp2q,
errl, err2, err3,
Ap, Aq;
*p, *q;
Ink, Itemp;
vis, visl, vis2, vis3;

/* Split links until requested number of links is obtained or */
/* the link error drops below that of the solver, i.e. epsilon. */
while ((*reqlinks > 0 && heap->tail < *reqlinks) || (*reqlinks < 0))

/* Take the Link from the heap with the largest estimated error.
Ink - Lhdequeue(heap, stats);
p = Ink.p;
q •= Ink .q;
cpq = Ink.cpq;
epq •= Ink.epq;
Ap " p->area;
Aq «• q->area;
vis = Ink.vis;

{

*/

/*
/*
if

}

If reqlinks is -1, and the links just removed from the heap */
is not of ridiculous coupling, then terminate the subdivision. */
((*reqlinks < 0 &4 epq < big) | | epq < epsilon) (
/* Put the link back onto the heap and break. */
Lhenqueue(heap, Ink, stats);
break;

if (debug S refine) {
printf(

"Refining (%2d=>%2d): Fpq=%g cpq=%g epq=%g Qlen=%d vis=%d.\n",
p->id, q->id, cpq/Ap, cpq, epq, heap->tail, vis);

}

/* If p and q are the same node, subdivide 3 ways instead of 2. */
if (p == q) {

if (p->id <•» 0) {
visl = vis2 "= vis3 = vis;
cpql = Cfest(moan, p->left ,
cpq2 - Cfest(moan, p->left ,
cpq3 = Cfest(moan, p->right,
if (debug £ refine) (

p->left ,
p->right,
p->right,

Serrl,
Serr2,
ierr3,

Svisl,
&vis2,
Svis3,

work,
work,
work.

stats) ,
stats),
stats),

printf(" Estimates: (%2d to %2d) = %g\n",
p->left->id, p->left->id, cpql);

www.manaraa.com

130

printfC (%2d to %2d) - %g\n",
p->left->id, p->right->id, cpq2);

printfC <%2d to %2d) - %g\n",
p->right->id, p->right->id, cpq3);

if (cpql >0.0) I
Itemp.p - p->left;
Itemp.q = p->left;
Itemp.cpq - cpql;
Itemp.err = errl;
Itemp.vis - visl;
Lupdate(iltemp);
Lhenqueue(heap, Itemp,
(*work) +" 22;

)

if (cpq2 > 0.0) (
Itemp.p " p->left;
Itemp.q •» p->right;
Itemp.cpq - cpq2;
Itemp.err •= err2;
Itemp.vis = vis2;
Lupdate(SItemp);
Lhenqueue(heap, Itemp,
(*worlc) += 22;

)
if (cpq3 > 0.0) {

Itemp.p = p->right;
Itemp.q = p->right;
Itemp.cpq = cpq3;
Itemp.err •= err3;
Itemp.vis = vis3;
Lupdate(SItemp);
Lhenqueue(heap, Itemp,
(*work) += 22;

}

)
else

printf("Refine: p—q and is not composite !\n");

/* Subdivide p if it is larger or is the only composite of the pair. */
else if (

(p->id <" 0 && q->id >0) ||
(Ap > Aq && p->id <= 0) ||
(Ap > Aq && q->id > 0)) {

Subdiv(p);
(*wor){) += 96; /* Subdiv */
visl = vis2 = vis;
Cplq = Cfest(moan, p->left , q, Serrl, Svisl, work, stats);
Cp2q - Cfest(moan, p->right, q, &err2, Svis2, work, stats);
if (debug fi refine) {

printf(" Split patch %d into patches %d and %d.\n",
p->id, p->left->id, p->right->id);

printf(" Cplq = %g Cp2q = %g\n", Cplq, Cp2q);
)
if (Cplq >0.0) (

Itemp.p •= p->left;
Itemp.q •= q;
Itemp.cpq = Cplq;
Itemp.err = errl;
Itemp.vis •= visl;
Lupdate(<emp);
Lhenqueue(heap, Itemp, stats);
(*work) +"= 22;

)
if (Cp2q >0.0) I

Itemp.p - p->right;
Itemp.q = q;

stats);

stats);

stats);

www.manaraa.com

131

Itemp.cpq - Cp2q;
Itemp.err = err2;
Itemp.vis - vis2;
Lupdate(filtemp);
Lhenqueue(heap, Itemp, stats);
(*work) +•= 22;

)

/* Subdivide q because it has the larger area. */
else {

Subdiv(q);
(*work) += 96; /* Subdiv */
visl = vis2 - vis;
cpql = Cfest(moan, p, q->left , fierrl, Svisl, work, stats);
cpq2 - Cfest(moan, p, q->right, Serr2, &vis2, work, stats);
if (debug & refine) {

printf(" Split patch %d into patches %d and %d.\n",
q->id, q->left->id, q->right->id);

printf (" Cplq*=%g Cp2q=%g\n", cpql, opq2);
)

if (cpql >0.0) (
Itemp.p •= p;
Itemp.q = q->left;
Itemp.cpq = cpql;
Itemp.err •= errl;
Itemp.vis = visl;
Lupdate(&Itemp);
Lhenqueue(heap, Itemp, stats);
(*work) += 22;

)
if (cpq2 >0.0) {

Itemp.p = p;
Itemp.q = q->right;
Itemp.cpq = cpq2;
Itemp.err = err2;
Itemp.vis = vis2;
Lupdate(Sltemp);
Lhenqueue(heap, Itemp, stats);
(*work) += 22;

}
}

)

*reqlinks = heap->tail;
)

/**/
/* Return a coupling factor estimate from patch p to patch q (symmetric).
/**/
float
Cfest(Node *moan. Node *p. Node *q, float *err. Visible *vis, double *work,

int stats [))
(

Vector Rij;
float CeSt, Opart,

cpqmin, cpqmax,
magsq,
el, e2;

int i ;

/* Check for null pointer. Return 0.0 if null. */
if (!p II !q) 1

*err = 0.0;
return 0.0;

)

/* If either p or q is a composite, use the product */
/* of their areas over total area as coupling factor. */

www.manaraa.com

132

if (p->id <= 0 I I q->id <- 0) {
{*work) += 6;
*err = Fmax(p->area, q->area);
return p->area * q->area / moan->area;

)

/* Both p and q are polygons. Check to see if Cfest has been */
/* called with p —• q. If so, return 0. */
if (p — q) {

*err - 0.0;
return 0.0;

)

/* If the link inherited partial visibility, do an occlusion test.
/* Return early if occluded. */
if (*vis partial) (

*vis = Occlusion(moan, p, q, work);
if (debug & refine) {

printf (" Occlusion(%3d->%3d) returns %s\n", p->id, q->id,
(*vis — partial) ? "partial" :
((*vis "= visible) ? "visible" : "blocked"));

)
if (*vis == blocked) {

stats[blocked]++;
*err = 0.0;
return 0.0;

)
)

/* Calculate some geometry constants. */
Cest - 0.0;
cpqmax = 0.0;
cpqmin = big;

/* Do the two center-to-center estimates. */
Vdiff(Rij, q->center, p->center);
magsq - Vmagsq(Rij);
el - Vdot(p->normal, Rij);
e2 " - Vdot(q->normal, Rij);
Cpart - el * e2 / (magsq * (magsq * PI));
cpqmin - Fmin(cpqmin, Cpart);
cpqmax = Fmax(cpqmax, Cpart);
if (Cpart > 0.0)

Cest += Cpart;
Cpart = el * e2 / (magsq * (magsq * PI));
cpqmin = Fmin(cpqmin, Cpart);
cpqmax = Fmax(cpqmax, Cpart);
if (Cpart > 0.0)

Cest += Cpart;

/* Do the eight off-center estimates. */
for (i •> 0 ; i < 4 ; i++) (

Vdiff (Rij, q->vertex[i], p->center);
magsq •= Vmagsq(Rij);
if (magsq < eps * eps)

magsq - big;
(*work) += 8;

/* Finally, do the coupling estimate using disk method. */
el = Vdot(p->normal, Rij);
e2 •= - Vdot (q->normal, Rij);
Cpart •= (el * e2) / (magsq * (magsq * PI));
cpqmin •= Fmin (cpqmin, Cpart);
cpqmax = Fmax(cpqmax, Cpart);
if (Cpart > 0.0)

Cest += Cpart;
(*work) += 21;

www.manaraa.com

133

for (i - 0 ; i < 4 ; i++) {
Vdiff (Rij, q->center, p->vertex[i]);
tnagsq - Vmagsq(Rij);
if (magsq < eps * eps)

magsq ~ big;
(*work) +- 8;

/* Finally, do the coupling estimate using disk method. */
el - Vdot(p->normal, Rij);
e2 - - Vdot(q->normal, Rij);
Cpart = (el * e2) / (magsq * (magsq * PI));
opqmin - Fmin(cpqmin, Cpart);
cpqmax = Fmax(cpqmax, Cpart);
if (Cpart > 0.0)

Cest +- Cpart;
(*work) +- 21;

(*work) += 3;
if (*vis == partial)

cpqmin " Fmin(cpqmin, 0.0);
*err = cpqmax - cpqmin;
return Cest * (float) 0.1;

float
Solver(Node *moan, int rho, int emiss, int x, float epsilon,

int area, int p, int rowsums, double *work)
(

int i,
nleaf, nlink;

float resid;
int rhoinv, t;

rhoirv •= Halloc () ;
t «= Halloc () ;
Hgetarea(moan, area);
Hfill(moan, p, 1.0);
Matvecmult(moan, rowsums, p);
Hinvert(moan, rowsums, rowsums);
Hinvert(moan, rhoinv, rho);
nleaf = Numleaves(moan);
nlink = heap->tail;
(*work) += (10 * nlink + 14 * nleaf) + 6 * nleaf;

/**/
/* Use Jacobi iteration to solve the system.
/ * * /
i •= 0;
do (

/**/
/* The following C++ expresses the Jacobi iteration.
/* X = (moan * x) * rowsums * rho + emiss;
/* resid •= (rhoinv*area*(x-emiss) - area*rowsums*(moan*x)).infnorm();
/**/

/* Next iterate */
Matvecmult(moan, x, x);
/**/
/* Hmult(moan, x, x, rowsums);
/* Hmult(moan, x, x, rho);
/* Hadd (moan, x, x, emiss);
/**/
Hmma (moan, x, rowsums, rho, emiss);

/* Residual calculation */

www.manaraa.com

134

Matvecmult(moan, p, x);
/**/
/* Hmult(moan, t , rowsums, p);
/* Hsub (moan, p, x, emiss);
/* Hmult(moan, p, p, rhoinv);
/* Hsub (moan, t, p, t);
/* Hmult(moan, t, t, area);
/* resid - Hinfnorm(moan, t);
/**/
Hmsmsmn (moan, Sresid, rowsums, p, x, emiss, rhoinv, area);

putchar(planechar);
fflush(stdout);
i++;

} while (resid > epsilon);
(*wor){) +•= i * (2 * (12 * nlink + 14 * nleaf)/* Matrix-vector multiplies

+ 9 * (nleaf)); /* Vector operations */

Hfree(rhoinv);
Hfree (t);
return resid;

www.manaraa.com

135

A.5 Source file patch.c

/*****/

/* File: patch.c
/*
/* SLALOM 93
/* Functions which operate on Node type.
/*
/* The data structure constructed by this program is a
/* binary tree which consists of three distinct strata. Composite nodes form
/* the top of the patch subdivision hierarchy. These nodes are groupings of
/* polygons which are specified by the user. Next is the single level of
/* Polygons representing the scene geometry specified by the user. Finally,
/* the third and bottom-most stratum is comprised of Polygons representing
/* the subdivided user-specified polygons.
/*
/* Each Node in the patch hierarchy may have some number of "links" or
/* "interactions" with other patches in the hierarchy. Each link represents
/* the (constant) content of a single block in the coupling matrix. Thus, the
/* hierarchy forms an induced coupling matrix. Vectors with the same
/* hierarchical structure are allocated in the patch tree. These vectors are
/* called HierVecs.
/*
/* Version: %G% %W%
/*****/

•include <stdio.h>
#include <math.h>
•include "slal.h"
•include "proto.h"

/**/
/* Static declarations and functions.
/**/
static int vecalloc - 0;
int solelemR = 0;
int solelemG = 0;
int solelemB = 0;
int rhoelemR = 0;
int rhoelemG = 0;
int rhoelemB =• 0;
LinkHeap *heap = NULL;
static void Indent(int level)

/**•*************** !
/* Node Functions */
/****************** /

/**/
/* Constructor. Initialize vectors with zero.
/**/
Node *
Nodealloc(NodeType type)
(

static int nextid = 0; /* Composites have ID <= 0; patches have ID >- 1 */
Node *nd;

nd •= (Node *) malloc (sizeof (Node)) ;
nd->left " nd->right = nd->parent = (Node*) NULL;
nd->t •= 0.0;
if (type == composite)

nd->id = - (nextid++);
else

nd->id "= nextid++;
Vzero(nd->center);
return nd;

www.manaraa.com

136

}

/**/
/* Copy other patch geometry.
/**/
void
Nodecopy(Node *dest, Node *nd)
(

int i, mask;

dest->left - dest->right - dest->parent - (Node*) NULL;
dest->t - 0.0;
for (i " 0 ; i < maxhiervec ; i++) {

mask - (1 « i) ;
if (vecalloc & mask)

dGst->e[i] - nd->e[i];
)
Vzero(dest->center) ;

)

/**/
/* Destructor. Delete subtrees recursively.
/**/
void
Nodefree(Node *nd)
{

if (!nd)
return ;

Nodefree(nd->left);
Nodefree(nd->right);
free(nd);

)

/**/
/* Allocate storage for a HierVec. This method allocates a slot for storing
/* a hierarchical vector in an existing patch hierarchy. When each node in
/* the patch hierarchy is created, an array of 'maxhiervec' floats is also
/* allocated in which to store the elements of hierarchical vectors. This
/* method searches for an open slot in this array. If an open slot is found,
/* then is is mark as being in use, and the slot number is returned. If no
/* open slot is found, an error message is printed, and -1 is returned. This
/* method, since it relies on the static member 'vecalloc' to hold the
/* allocation table, may be called on any node in the hierarchy.
/**/
int
Halloc(void)
(

int i, mask;

/* Find an empty vector slot, and return its index. */
for (i = 0 ; i < maxhiervec ; i++) {

mask = (1 « i) ;
if (!(vecalloc & mask)) {

vecalloc |= mask;
return i;

)
)

/* All vectors in use. */
fprintf(stderr, "Halloc: All vector slots full !\n");
return -1;

}

/**/
/* Free up a HierVec slot.
/**/
void

www.manaraa.com

137

H£ree(lnt d)
(

int mask;

/* Make sure the vector slot is actually in use. */
mask - (1 << d);
if (!(vecalloc & mask)) (

fprintf(stderr, "Hfree: Vector not allocated to begin with!\n");
abort 0 ;

)

/* Mark the vector slot as free. */
vecalloc S- -mask;

)

/**/
/* Hierarchical matrix-vector multiply. This method multiplies the matrix
/* induced by the nodes' link tables by a hierarchical vector, and returns
/* the hierarchical product vector. Note that the matrix which is implied
/* is the FORM FACTOR matrix, not the ACCEPTANCE FACTOR matrix. This
/* method must be called on the root node of a hierarchy. The multipli-
/* cand vector slot number is passed in 'x', and the desired product vector
/* slot number is given in 'b'. Matrix-vector multiply is accomplished in
/* four phases, which follow this method.
/**/
void
Matvecmult(Node *nd, int b, int x)
{

int i ;
Link *P;

/* Check that this is the root node of the hierarchy. */
if (nd->parent != NULL) {

fprintf(stderr, "Matvecmult() only works on root node.\n");
exit (1);

}

/* Collapse vector leaf elements up the hierarchy. */
Hprep(nd, x);

/* Add up link contributions. */
P = heap->p;
for (i = 0 ; i < heap->tail ; i++) {

P->p->t += P->cpq * P->q->e[x) / P->p->area;
if (P->p !" P->q)

P->q->t +•= P->cpq * P->p->e [x] / P->q->area;
P++;

}

Prop(nd, b); /* Collapse link contributions up and down the hier. */
)

/**/
/* Prepare the multiplicand vector for matrix-vector multiply by collapsing
/* its leaf nodes up the hierarchy. Note that since the multiplicand vector
/* is a vector of radiosities, a parent's radiosity is the area-weighted
/* average of its children's radiosities.
/**/

void
Hprep(Node *p, int x)
{

Node *sstak[128],
**ssp = sstak;

char pstak[128],
*csp = pstak.

if (!p)

www.manaraa.com

138

return;

/* Collapse vector elements upwards.
*ssp++ " p;
*csp++ - 0;
while (ssp !" sstak) {

p - *—ssp;
c • *—csp;
p->t = 0.0;
if (p->left)

if (c "
ssp++;
*csp++ '
*ssp++ '
*csp++ '

)
else if (c '

ssp++;
*csp++ '
*ssp++ '
*csp++ '

I
else {

p->e[x]

i

: If
: p->left;
: 0;

= 1) 1

2;
p->right;
0;

/* Left subtree not visited. */

/* Right subtree not visited. */

/* Visit this node. */
>area * p->left ->e[x] +

* p->right->e[x]) /
(p->left
p->right->area

(p->left ->area + p->right->area);

)

/**/
/* Complete the answer by propagating partial dot-product sums down the
/* hierarchy from the root.
/**/
void
Prop(Node *p, int b)
(

Node *sstak[128],
**ssp •= sstak;

char pstak[128],
*csp = pstak,
c;

float temp;

if (!p)
return;

/* Collapse vector elements upwards. */
*ssp++ - p;
*csp++ = 0;
while (ssp !=• sstak) {

p = *—ssp;
c = *—csp;
if (c == 0) (

p->e[b) = p->t;
if (p->parent)

p->e[b] += p->parent->e[b] ;

if (p->left) {
if (c == 0)

ssp++;
*csp++ '
*ssp++ '
*csp++ •

}

else if (c •
ssp++;

= 1;
= p->left;
= 0;

= = 1) {

/* Left subtree not visited. */

/* Right subtree not visited. */

www.manaraa.com

139

*csp++
*ssp++
*csp++

2;
p->right;
0;

)

void
Propup(Node *p, int b)
(

Node *sstak(128],
**ssp " sstak;

char pstak[128],
*csp - pstak,
o;

if (!p)
return;

/* Collapse vector elements upwards. */
*ssp++ = p;
*csp++ = 0;
while (ssp != sstak) {

p = *—ssp;
c *• * — csp;
if (c "== 0)

p->e[b] = p->t;
if (p->ieft) {

if (c •=•= 0) {
ssp++;
*csp++ - 1;
*ssp++ = p->left;
*csp++ •» 0;

)
else if (c — 1) {

ssp++;
*csp++ "2;
*ssp++ = p->right;
*csp++ = 0;

}

else {

/* Left subtree not visited. */

/* Right subtree not visited. */

}

/* Visit this node. */
p->e[b] " p->left->e[b] + p->right->e[b];

/* All the following vector operations take slot numbers as their arguments.
/***•*/

/**/
/* Hierarchical dest ~ a + b.
/**/
void
Hadd(Node *nd, int dest, int a, int b)
(

if (!nd)
return;

if (!nd->left)
nd->e[dest] = nd->e[a] + nd->e[b];

Hadd(nd->left , dest, a, b);
Hadd(nd->right, dest, a, b);

)

/**/
/* Hierarchical dest a - b.

www.manaraa.com

140

/**/
void
Hsub(Node *nd, int dest, int a, int b)
{

if (!nd)
return;

if (!nd->left)
nd->e[dest] - nd->e[a] - nd->e[b];

Hsub(nd->left , dest, a, b);
Hsub(nd->right, dest, a, b) ;

)

/**/
/* Hierarchical dest - -a.
/ * * /
void
Hneg(Node *nd, int dest, int a)
(

if (!nd)
return;

if (!nd->left)
nd->e[dest] = - (nd->e[a]);

Hneg(nd->left , dest, a);
Hneg(nd->right, dest, a);

)

/**/
/* Hierarchical dest = a * b.
/**/
void
Hmult(Node *nd, int dest, int a, int b)
(

if (!nd)
return;

if (lnd~>left)
nd->e[dest) - nd->e[a] * nd->e[b];

Hmult(nd->left , dest, a, b) ;
Hmult(nd->right, dest, a, b) ;

}

/**/
/* Hierarchical dest «• a * s.
/**/
void
Hscale(Node *nd, int dest, int a, float s)
{

if (!nd)
return;

if (!nd->left)
nd->e[dest] = nd->e[a] * s;

Hscale(nd->left , dest, a, s);
Hscale(nd->right, dest, a, s);

)

/**/
/* Hierarchical dot product of a and b.
/ * * /
float
Hdot(Node *nd, int a, int b)
(

/* If called with NULL pointer, just return 0. */
if (!nd)

return 0.0;
return (nd->left)

? (Hdot(nd->left, a, b) + Hdot(nd->right, a, b))
: (nd->e[a] * nd->e[b));

)

www.manaraa.com

141

/**/
I* Hierarchical dest - 1.0 / a.
/**/
void
Hinvert(Node *nd, int dest, int a)
{

if (!nd)
return;

if (!nd->left && nd->e[a] !- 0.0)
nd->e[dest) =1.0/ nd->e[a);

Hinvert(nd->left , dest, a);
Hinvert(nd->right, dest, a);

)

/**/
/* Vector d = vector s.
/**/
void
Hcopy(Node *nd, int d, int s)
(

if (!nd)
return;

if (!nd->left)
nd->e[d] - nd->e[s];

Hcopy(nd->left , d, s);
Hcopy(nd->right, d, s);

)

/**/
/* Vector d « constant.
/**/
void
Hfill(Node *nd, int d, float s)
{

if (!nd)
return;

if (!nd->left)
nd->e[d] - s;

Hfill(nd->left , d, s) ;
Hfill(nd->right, d, s);

)

/ * * /
/* Vector one norm.
/ * * /
float
Hnorm(Node *nd, int d)
{

if (!nd)
return 0.0;

return (nd->left ? 0.0 : fabs((double) nd->e[d])) +
Hnorm(nd->left , d) +
Hnorm(nd->right, d);

}

/**/
/* Vector infinity norm.
/**/
float
Hinfnorm(Node *nd, int d)
{

float mleft, mright;

if (!nd)
return 0.0;

if (nd->left) {
mleft = Hinfnorm(nd->left, d);

www.manaraa.com

142

mright = Hlnfnorm(nd->right, d) ;
return Fmax(mleft, mright);

else
return fabs((double) nd->e[d]);

1

void
Hmma (Node *p, int x, int rowsums, int rho, int emiss)
(

Node *sstak[128],
**ssp " ssta)c;

if dp)
return;

/* Collapse vector elements upwards. */
*ssp++ - p;
while (ssp != sstak) {

p - * — ssp;
if (!p->left)

p->e[x] " p->e[x) * p->e[rowsums] * p->e[rho] + p->e[emiss];
if (p->left) {

*ssp++ " p->left;
*ssp++ - p->right;

I
)

)

void
Hmsmsmn (Node *p, float *resid, int rowsums, int tmp, int x,

int emiss, int rhoinv, int area)

Node *sstak[128],
**ssp •= sstak;

float t;

if (!p)
return;

/* Collapse vector elements upwards. */
*resid - 0.0;
*ssp++ - p;
while (ssp !" sstak) {

p = *—ssp;
if (!p->left) (

t » p->e[area] * (p->e[rhoinv] *
(p->e[x] - p->e[emiss]) - p->e[rowsums] * p->e[tmp]);

*resid = Fmax(*resid, fabs((double) t));
}
if (p->left) {

*ssp++ = p->left;
*ssp++ •= p->right;

)
)

)

/**/
/* Get Area vector. Set each element of the hierarchical vector to the
/* geometrical area of the node it is associated with.
1**1
void
Hgetarea (Node *nd, int d)
(

if (!nd)
return;

if (!nd->left)
nd->e[d] = nd->area;

www.manaraa.com

143

if (nd->left) (
Hgetarea(nd->left , d);
Hgetarea(nd->right, d);

}
)

/**/
/* Pretty-print a vector.
/ * * /
void
Hprint(Node *nd, int d)

/* Check for null pointer. */
if (!nd)

return;

/* Recur if body node, print if leaf node. */
if (nd->left) {

Hprint(nd->left , d);
Hprint(nd->right, d) ;

)
else

printf("%7g nd->e[d]);

/* Newline if done with root node. */
if (!nd->parent)

printf("\n");
}

/**/
/* Pretty print the current patch hierarchically. If the verbose flag
/* is greater than zero, the patch geometry is printed in addition to
/* the patch number. If the verbose flag is greater than one, then the
/* patch center is also printed.
/**/
void
Nodeprint(Node *nd, int verbosity, int level)
{

int i, mask;

if (!nd)
return;

Indent(level);
printf ("Node #%d:\n", nd->id);

if (verbosity > 0) {
if (nd->id <- 0) (

Indent(level);
printf (" Bbox - [%g - %g] [%g - %g][%g - %g]\n",

nd->vertex[0][0], nd->vertex[l][0],
nd->vertex[0][1], nd->vertex[1][1],
nd->vertex[0][2j, nd->vertex[1][2]);

I
Indent(level);
printf (" Center = ");
Vprint(nd->center);
printf("\n");
Indent(level);
printf (" Normal - ");
Vprint(nd->normal);
printf("\n");
Indent(level);
printf (" Area - %g\n", nd->area);

)
if (verbosity > 1) {

Indent(level);
printf (" Vector elements: ");

www.manaraa.com

144

f o r (1 = 0 ; i < m a x h i e r v e c ; i + +) (
mask - (1 « i) ;
if (vecalloc & mask)

printf("%d;%f i, nd->e[i]);
)
printf("\n");

I

if (nd->left)
Nodeprint(nd->left , verbosity, level + 1);

if (nd->right)
Nodeprint(nd->right, verbosity, level + 1);

)

/ * * /
/* Convenience routine to indent some number of spaces.
/**/
static void
Indent(int level)
{

while (level—)
printf(" ");

}

/************•*********/

/* Polygon Functions */
/***************•*•****/

/**/
/* Constructor from four vertices.
1**1
void
Makepoly(Node *nd. Vector vO, Vector vl. Vector v2, Vector v3)
(

int iO, il;
float tmp;
Vector vtmpl, vtmp2, edge[4];

/* Install vertices, construct the center, and set the normal vector.
Vcopy (nd->vertex[0] , vO) ;
Vcopy (nd->vertexil] , vl) ;
Vcopy (nd->vertex[2] , v2) ;
Vcopy (nd->vertex[3), v3) ;
Vdiff (edge[0], vl. vO) ;
Vdiff (edgeilj, v2. vl);
Vdiff (edge [2] , v3. v2);
Vdiff (edge[3], vO, v3) ;
Vdiff (vtmpl, v2, vO) ;
Vdiff (vtmp2, v3. vl) ;
Vcross (nd->normal. vtmpl. vtmp2);
Vscale (nd->normal. nd->normal. 0.5) ;
Vsum (nd->center. vO, vl) ;
Vsum (nd->center, nd->center, v2) ;
Vsum (nd->oenter. nd->center. v3);
Vscale (nd->center. nd->center, 0.25);
nd->area = Vmag(nd->normal);

/* Now make sure that the polygon is convex and planar. */
for (iO - 0 ; iO < 4 ; iO++) {

il •= (iO + 1) & 3;
Vcross(vtmpl, edge[iO], edge[il]);
tmp = fabs(Vdot(vtmpl, nd->normal) - (nd->area * Vmag(vtmpl)));
if (tmp > eps * nd->area * Vmag(vtmpl)) {

Vzero (nd->vertex[0]);
Vzero(nd->vertex[1j);
Vzero (nd->vertex[2]);
Vzero(nd->vertex[3]);
Vzero(nd->center);

www.manaraa.com

145

Vzero(nd->normal);
nd->area - 0.0;
return;

/**/
/* Initialize this
/* normal vectors,
1**1
void
Nodeinit(Node *nd)

Vector
Vector

Node
float
int

vtmpl,
Ibmin,
rbmin,
*p, *q,
tmp;
if j;

node and its subtree. Initialization consists of setting
and in the case of composite nodes, the center as well.

vtmp2;
Ibmax,
rbmax;

/*
if

)

Set center and normal vectors
(nd->id > 0) (

(nd->center,
(nd->center,
(nd->center,
(nd->center,
(vtmpl,
(vtmp2.

for a polygon. */

Vsum
Vsum
Vsum
Vscale
Vdiff
Vdiff
Vcross
Vscale

nd->vertex[0],
nd->center,
nd->center,
nd->center,
nd->vertex[2],
nd->vertex[3],

(nd->normal, vtmpl,
(nd->normal, nd->normal,

nd->area = Vmag(nd->normal);

nd->vertex[1))
nd->vertex[2 j) ,
nd->vertex[3]) ,
0.25);
nd->vertex [0]),
nd->vertex [1j);
vtmp2);

0.5) ;

/* Recur for all daughters. */
if (nd->left)

Nodeinit(nd->left);
if (nd->right)

Nodeinit(nd->right);

/* Set area, center, normal, bbox for composites. */
if (nd->id <•= 0) {

/* Set area. */
nd->area •> nd->left->area + nd->right->area;

/* Set center. */
Vscale(vtmpl, nd->left ->center,
Vscale(vtmp2, nd->right->center,
Vsum (nd->center, vtmpl, vtmp2);
Vscale(nd->center, nd->center,

1.0 / (nd->left ->area + nd->right->area));

nd->left ->area);
nd->right->area);

/* Set normal. */
Vsum (nd->normal, nd->left->normal, nd->right->normal);
tmp = Vmag(nd->normal);
if (tmp !- 0.0)

Vscale (nd->normal, nd->normal, nd->area / tmp);

/* Set bounding box. */
/* Extract the bounding boxes for the left and right daughters,
p = nd->left;

* /

q '
if

• nd->right;
(nd->l6ft->id
Vcopy(Ibmin,
Vcopy(Ibmax,

<= 0) {
p->vertex[0]);
p->vertex[lj) ;

else {
/* Get the bounding box around p and q. */

www.manaraa.com

146

for (j - 0 ; j < 3 ; j++) {
lbmin[j) - p->vertex[0][j];
Ibmaxij] - p->vertex[0][j];
for (i - 1 ; i < 4 ; i++) {

lbmin[j] » Fmin(Ibmin[j], p->vertex[i][j]);
Ibmaxij] - Fmax(Ibmaxij], p->vertexii)ij]);

)
}

if (nd->right->id <= 0) {
Vcopy(rbmin, q->vertex[0));
Vcopy(rbmax, q->vertexi1]);

)
else {

/* Get the bounding box around p and q. */
for (j - 0 ; j < 3 ; j++) {

rbmin[j] » q->vertex[0][j];
rbmaxi j] " q->vertexi0] ij];
for (i •" 1 ; i < 4 ; i++) {

rbmin[j] = Fmin(rbmin[j], q->vertex[i][j]);
rbmax i j j - Fmax(rbmaxij], q->vertexii]ij]);

)
)

.)

/* Merge the left and right bounding boxes. */
for (j = 0 ; j < 3 ; j++) {

nd->vertex[0] [j] •= Fmin (Ibmin [j], rbmin [j]) ;
nd->vertexil] [j] - Fmax(Ibmax[j], rbmax[j j);

)
)

/**/
/* Return number of ACTIVE leaves in hierarchy.
/**/
int
Numleaves(Node *nd)
(

return nd->left ? Numleaves(nd->left) + Numleaves(nd->right) : 1;

/**/
/* Use a bounding box check to see if anything is between p and q.
/**/
Visible
Occlusion (Node *0, Node *P, Node *Q, double *work)
(

Vector r, s, t, u,
vtmpl,
P(4), q[4], o[4] ;

Visible visl, vis2;
float tmp, /* Scratch scalar

pqbox[6] ; /* Bbox about polygons p and q
int i , j , k , V , /* Loop counters

kl, k2, k3, k4, /* Hit-miss counters
iP/ iq, /* Hull plane counters
ipO, iqO,
incflag;

static Vector hullnm[8] ,
hullpt i8];

static int ih,
hullp[8], /* Hull edge vertex index. */
hullqi8); /* Hull edge vertex index. */

static Node *lastP - NOLL,
*lastQ •= NULL;

www.manaraa.com

147

/* Copy p, q, and o vertices into convenience variables. */
for (i "• 0 ; i < 4 ; i++) {

Vcopy(o[i), 0->vertex[i]);
Vcopy(p[i], P->vertex[ij);
VcopyCqiij, Q->vertGx[i]);

)

/ * * /
/* PQ VISIBILITY AND SUPPORT PLANE SPLITTING TEST */
/* Find the number of vertices of p in q's half plane, and vice */
/* versa. */
/* If p behind q or q behind p, then they do not see each other. */
/* If p straddles q or q straddles p, they may be partly visible. */
/**/
kl " k2 " k3 - k4 >= 0;
for (i » 0 ; i < 4 ; i++) {

Vdiff(r, q[i], p[i]);
tmp •= Vdot(r, P->normal) ;
if (tmp > eps)

kl++;
if (tmp < -eps)

k2++;
tmp " Vdot(r, Q->normal);
if (tmp < -eps)

k3++;
if (tmp > eps)

k4++;
}
(*work) +•» 68;
/* At least one polygon can't see the other. */
if (kl ==0 II k3 0)

return blocked;
/* One polygon splits the other's support plane. */
if (k2 > 0 II k4 > 0)

return partial;

/**/
/* Test for a COMPOSITE between two polygons. */
/**/

if (0->id <- 0) {
/* Get the bounding box around p and q. */
for (i = j = 0 ; i < 6 ; i += 2, j++) (

pqbox[i+0] = Fmin(P->vertex[0)tj]f Q->vertex[0][j]);
pqbox[i+l] - Fmax(P->vertex[0]ijj, Q->vertex[0j[jj);
for (v - 1 ; V < 4 ; v++) (

pqbox[i+0] - Fmin(pqbox[i+O],
Fmin(P->vertex[v][j], Q->vertex[v][j]));

pqbox[i+l] " Fmax(pqbox[i+l],
Fmax(P->vertex[v][j], Q->vertex[v)[j)));

}

)

/* Test if this polygon's bbox lies completely to one side of */
/* pq's bbox. If so, then there is surely no occlusion. */
if ((0->vertex[0][0] < pqbox[0] && 0->vertex[l][0] < pqbox[0] ||

0->vertex[0][0] > pqbox[1] && 0->vertex[l][0] > pqbox[1)) ||
(0->vertex[0][1j < pqbox[2] && 0->vertex[1j[1] < pqbox[2] ||
0->vertexi0][1] > pqbox[3] £& 0->vertex[1j[1j > pqbox[3]) ||

(O->vertex[0) [2] < pqbox[4] && 0->vertex[l][2] < pqbox[4j | j
0->vertexi0][2] > pqbox[5] && 0->vertex[1][2j > pqbox[5])) {

if (debug S isect)
printf("Occlusion: Polygon outside bounding box.\n", 0->id);

return visible;
}

visl - Occlusion(0->left, P, Q, work);
if (debug & isect) {

www.manaraa.com

148

printf("Occlusion(%d): Left returned %s\n", 0->id,
(visl "" partial) ? "partial" :
{(visl visible) ? "visible" : "blocked"));

I
if (visl blocked)

return visl;
vis2 - Occlusion(0->right, P, Q, work);
if (debug 6 isect) (

printf("Occlusion(%d): Right returned %s\n", 0->id,
(vis2 — partial) ? "partial" :
((vis2 " visible) ? "visible" : "blocked"));

)
if (vis2 — blocked)

return vis2;
if (visl — partial || vis2 — partial)

return partial;
return visible;

1
/**/
/* Test for a POLYGON between two polygons. */
/ * * /
else I

/**/
/* ENDCAP TEST */
/* Check if o lies at least partly in p and q half planes. Return 2 */
/* if all vertices of o are behind p or behind q, or if p and q are */
/* on the same side of o. */
/**/

kl = k2 •" 0;
for (i - 0 ; i < 4 ; i++) {

Vdiff(vtmpl, o[i], p[i]);
tmp - Vdot(vtmpl, P->normal);
if (tmp > eps) /* o vertex is strictly in front of p. */

kl++;
Vdiff(vtmpl, o(i), q[i]);
tmp = Vdot(vtmpl, Q->normal);
if (trap > eps) /* o vertex is strictly in front of q. */

k2++;
)
(*work) += 72;
if (kl =- 0 II k2 •»" 0) /* No vertices are strictly in front */

return visible; /* of the p and q planes. */

kl - k2 = k3 = k4 = 0;
for (i - 0 ; i < 4 ; i++) {

Vdiff(vtmpl, p[i), o[i]);
tmp = Vdot (vtmpl, 0->norraal);
if (tmp > -eps) /* p vertex is on or in front of o. */

kl++;
if (tmp < eps) /* p vertex is on or behind o, */

k2++;
Vdiff(vtmpl, q[i), o[i]);
tmp = Vdot(vtmpl, 0->normal);
if (tmp > -eps) /* q vertex is on or in front of o. */

k3++;
if (tmp < eps) /* q vertex is on or behind o. */

k4++;
}
(*work) += 80;
if ((kl "== 4 && k3 ==4) II (k2 «== 4 && k4 == 4))

return visible;

/ * * /
/* WAIST PLANE CONSTRUCTION */
/* Finally, check whether o lies in the half planes that define the */
/* "waist" of the convex hull of p and q. Form the 8 planes defined */
/* by an edge of p with the "rearmost" vertex of q and vice versa, */

www.manaraa.com

149

/* storing them as point-normal pairs. Test planes against all 4 */
/* points of o. If o lies strictly behind any half plane, return 2. */
/* If o lies strictly within at least one (open) half plane, */
/* return 1. */
/* If o contains every intersection of hull with o plane, return 0.*/
/**/
if (P !" lastP II Q !- lastQ) (

lastP
lastQ

P ;
Q;

ip - ipO " 0;
Vdiff(s, p[(ip+l)S3), p[ip]);
for (i •= 0 ; i < 4 ; i++) {

Vdiff(r, q[i], p[ip]);

Vcross(u, r, s);
if (Vmagsq(u) < eps * eps)

Vcopy(u, P->normal);

/* Form directed edge of patch p.*/

/* Vector from anchor point on p */
/* to trial point on q. */

/* Now check that all other points on q */
/* lie in front of this plane. */
for (k = 0 ; k < 4 ; k++) {

if (k =- i)
continue;

Vdiff(vtmpl, q[k], q[i]);
tmp - Vdot(vtmpl, u); /* Dot with vector from ref */

/* point to test vertex */
(*work) += 9;
/* If vertex lies behind plane, end loop. */
if (tmp < -eps)

break;
)
(*work) +•=• 19;

if (k 4) {
iq •> iqO •
break;

)
)
(*work) +- 3;

i;

ih " 0;
incflag
do {

0;

/* Find out which vertex can be incremented. */
/* First, try incrementing ip. */
Vdiff(s, p[(ip+l)i31, p[ip]);

Vdiff(r, q[iq], p[ip]);

Vcross (u, r, s);
if (Vmagsq(u) < eps * eps)

Vcopy(u, P->normal);
(*work) +- 22;

/*
/*
/*
/*

Vector along edge on p from*/
vertex i to vtx i+1 mod 4. */
Vector from trial pt on q */
to head point of edge on p.*/

/* Normal to plane, r X s. */
/* Check if p[ip] and q[iq] */
/* are identical. */

/* Now check that all other points on q */
/* lie in front of this plane,
for (k •= 0 ; k < 4 ; k++) {

if (k =" iq)
continue;

Vdiff(vtmpl, q[k), q[iq]);
tmp = Vdot(vtmpl, u);

(*work) +"
if (tmp < •

break;

9;
•eps)

V

/* Dot with vector from ref
/* point to test vertex

*/
*/

/* If vertex lies behind plane*/
/* end loop. */

www.manaraa.com

150

)

/* If all points in q lie behind the plane, accept ip+1. */
if (k — 4) (

/* Store a line segment from vertex ip to iq. */
hullp [ihj - ip;
hullq [ih] - iq;
Vcopy(hullnm[ih], u);
Vcopy(hullpt[ihj, p[ip]);
ip •= (ip +1) S3;
incflag - 0;
ih++;
continue;

)

/* Next, try decrementing iq. */
Vdiff(s, q[(iq-l)&3], q[iq]); /* Vector along edge on q from*/

/* vertex i to vertex i-lmod4.*/
Vcross(u, r, s); /* Normal to plane, r X s. */
if (Vmagsq(u) < eps * eps)

Vcopy(u, Q->normal);
(*work) += 19;

/* Now check that all other points on p */
/* lie in front of this plane. */
for (k = 0 ; k < 4 ; k++) (

if (k == ip)
continue;

Vdiff(vtmpl, p[k], p[ip));
tmp - Vdot(vtmpl, u); /* Dot with vector from ref */

/* point to test vertex */
(*work) +•= 9;
if (tmp < -eps) /* If vertex lies behind plane*/

break; /* end loop. */
I

/* If all points in p lie behind the plane, accept iq-1. */
if (k 4) (

/* Store a line segment from vertex ip to iq. */
hullp [ih] = ip;
hullq [ihj - iq;
Vcopy(hullnm[ih], u);
Vcopy(hullpt[ihj, p[ip]);
iq ~ (iq - 1) & 3;
incflag •> 1;
ih++;
continue;

1

/* Disaster if we get to here. */
if (incflag -= 0) (

incflag - 1;
iq " (iq - 1) 5 3;

}

else {
incflag - 0;
ip - (ip + 1) S 3;

}

} while ((ip !» ipO || iq !" iqO) && ih < 8);

/**/
/* WAIST PLANE TESTS.
/* Now, actually check the vertices of
/* o against the waist planes of pq.
/**/
for (i = 0, k2 =" 0 ; i < ih ; i++) (

for (j - 0, kl - 0 ; j < 4 ; j++) {

www.manaraa.com

151

/* Bump kl if point j lies on the outside the half space. */
Vdiff(vtmpl, otj), hullpt[i]);
tmp - Vdot(vtmpl, hullnm[i]>;
if (tmp < eps)

kl++;
)

+- 36;
if (kl — 4) /* o lies completely behind hull plane,

return visible;
if (kl 0) /* o lies completely inside hull plane.

k2++;
I
if (k2 -= ih) /* o is strictly in front of every hull plane. */

return partial;

/* Test if the intersection of waist and support plane of o lies */
/* completely inside o. If so, then return total occlusion. */
for (i •= 0 ; i < ih ; i++) {

/* Vector along the i'th "waistline". */
Vdiff (r, q[hullq[i)], p[hullp[i]]);

/* Intersect the vector with o support plane. */
tmp - Vdot(r, 0->normal);
(*work) +" 8;
if (tmp !- 0.0) (/* SHOULD THIS BE EPSILON? */

Vdiff(vtmpl, o[0), p[hullp[i]]);
tmp •= Vdot (vtmpl, 0->normal) / tmp;
Vscale(s, r, tmp);
Vsum(s, s, p[hullp[i]]);
(*work) +- 18;

)
else (

Vcopy(s, p[hullp(il1);
break; /* FIX FOR ONORML PERP. TO WAISTLINE

}

/* Check if the IP lies inside o. */
for (j = 0 ; j < 4 ; j++) {

Vdiff (r, o[(j+l)S3), o[j]); /* Construct an edge of o. */
Vdiff (t, s, o[j]); /* Vector from o[j] to IP */
Vcross(u, r, t); /* u is perpendicular to r and t

/* Check the sign of the dot product of u with onormal. */
tmp - Vdot(0->normal, u) ;
(*work) +•» 21;
if (tmp < -eps)

break;

I

/* If this point does not lie inside o, then quit looking. */
if (j !- 4)

break;
}

/* If all points lie inside o, then return blocked. */
if (i == ih)

return blocked;

return partial;
}

)

/**/
/* Subdivide a patch into two subpatches. Split patch by halving the
/* longest side, and the side opposite the longest side. This function
/* always succeeds and returns TRUE.
/ * * /
void

www.manaraa.com

152

Subdiv(Node *nd)
{

Vector edge[4],
overtexO,
nvertexl;

float len[4],
temp;

int i,
longest,
opposite;

/* Return if patch has already been subdivided. */
if (nd->left)

return;

/* Allocate the new daughter patches. */
nd->left - Nodealloc(patch);
nd->right = Nodealloc(patch);
Nodecopy(nd->left , nd);
Nodecopy(nd->right, nd);
nd->left ->parent = nd;
nd->right->parent •= nd;

/* Compute the edge vectors. */
Vdiff(edge[0], nd->vertex[1], nd->vertex[0));
Vdiff(edgeilj, nd->vertex[2j, nd->vertex[1]);
Vdiff(edge[2], nd->vertex[3], nd->vertex[2]);
Vdiff(edge[3], nd->vertex[0], nd->vertex[3]);
len[0] = Vmagsq(edge[0]);
lenil] - Vmagsq(edge[1]);
len[2] - Vmagsq(edge[2]);
len[3] - Vmagsq(edge[3]);

/* Find the longest side. */
longest = 0;
temp «" len [0] ;
for (i - 1 ; i < 4 ; i++) {

if (len[i] > temp) (
temp " len[i];
longest - i;

)
)
opposite " (longest +2) & 3;

/* Split the longest side, and the side opposite it. */
Vscale (nvertexO, edge[longest], 0.5);
Vsum (nvertexO, nvertexO, nd->vertex[longest]);
Vscale(nvertexl, edge[opposite], 0.5);
Vsum (nvertexl, nvertexl, nd->vertex[opposite]);
Ma)cepoly(nd->left , nd->vertex[longest], nvertexO, nvertexl,

nd->vertex[(longest + 3) s 3]);
Makepoly(nd->right, nd->vertex[opposite], nvertexl, nvertexO,

nd->vertex[(opposite + 3) & 3]);
}

/*******************•***/

/* Composite Functions */
/***********************/

/**/
/* Constructor from two other nodes.
/ * * /
void
Makecomp(Node *nd, Node *p, Node *q)
(

int i, j;
Vector Ibmin, Ibmax,

rbmin, rbmax.

www.manaraa.com

153

vtmpl, vtinp2;

/* Link p and q to nd. */
nd->left - p;
nd->right - q;
p->parent - nd;
q->parent - nd;

/* Update the area and center of the composite. */
nd->area = p->area + q->area;
Vscale(vtmpl, p->center, p->area);
Vscale(vtmp2, q->center, q->area);
Vsum (nd->center, vtmpl, vtmp2);
Vscale(nd->oenter, nd->center, 1.0 / (p->area + q->area));

/* Extract the bounding boxes for the left and right daughters. */
if (nd->left->id <-= 0) {

Vcopy(Ibmin, p->vertex[0]) ;
Vcopy(Ibmax, p->vertex[1]);

1
else {

/* Get the bounding box around p and q. */
for (j = 0 ; j < 3 ; j++) (

Ibmin[j] » p->vertex[0) [j) ;
Ibmaxiii = p->vertex[0] ij1 ;
for (i = 1 ; i < 4 ; i++) {

Ibmin[j] = Fmin (Ibmin[j], p->vertex[i][j]);
Ibmax[j] " Fmax(Ibmax[j], p->vertex[ijfj]);

)

I
if (nd->right->id <-= 0) {

Vcopy(rbmin, q->vertex[0]);
Vcopy(rbmax, q->vertex[1j);

)
else (

/* Get the bounding box around p and q. */
for (j - 0 ; j < 3 ; j++) {

rbmin[j] = q->vertex[0)[j];
rbmax [j] •= q->vertex[0] [j] ;
for (i = 1 ; i < 4 ; i++) {

rbmin[j] = Fmin(rbmin[j], q->vertex[i][j]);
rbmax[j) = Fmax(rbmaxfjj, q->vertex[i](jj);

I
)

)

/* Merge the left and right bounding boxes. */
for (j - 0 ; j < 3 ; j++) {

nd->vertex[0][j] - Fmin(Ibmin[j], rbmin[j]);
nd->vertex[lj [j] = Fmax(Ibmax[jj, rbmax[j]);

I
)

/**/
/* Return this Node's level in hierarchy.
/**/
int
Getlevel(Node *p)
(

return p->parent ? Getlevel(p->parent) +1:0;
}

/* Return the number of nodes in */
/* the patch hierarchy starting */
/* here and going down. */
int
Numelem(Node *p)

www.manaraa.com

154

return p ? Kumelem(p->left) + Numelem(p->right)

www.manaraa.com

155

A.6 Source file heap.c

/**/
/* File: heap.c
/* SIALOM 93 adaptive patch subdivision testbed program.
/* Queue and Heap function definitions.
/* Version: %G% %W%
/**/

•include "slal.h"
•include "proto.h"

/*******•***********/

/* Queue Functions */

/**/
/* Constructor. Initialize to zero length and allocate no storage.
/**/
LinkQueue *
Lqalloc(void)

I
LinkQueue *lq;
Iq = (LinkQueue *) malloc(sizeof(LinkQueue));
lq->alloclen = lq->head •= lq->tail = 0;
lq->p = NULL;
return Iq;

)

/**/
/* Destructor. Free up any allocated storage.
/**/
void
Lqfree(LinkQueue *lq)

if (lq->p)
free(lq->p);

if (Iq)
free(Iq);

)

/* Return the number of Links in Q */
int
Lqlength(LinkQueue *lq)
i

return (lq->head - lq->tail + lq->alloclen) % lq->alloclen;
)

/**/
/* Enqueue the element Ink at the head of the queue.
/**/
void
Lqenqueue(LinkQueue *lq, Link Ink)
(

/* Check for overflow. */
if (!lq->p I I

lq->head == ((lq->tail - 1 + lq->alloclen) % lq->alloclen))
Lqextend(Iq, 0);

/* Insert the new element. */
lq->p[lq->head] - Ink;

/* Bump the head index. */
lq->head++;
if (lq->head >= lq->alloclen)

www.manaraa.com

156

lq->head - 0;
)

/**/
/* Dequeue an element from the tail of the queue.
/**/
Link
Lqdequeue(LinkQueue *lq)
(

Link Ink;

/* Check for underflow. */
if (lq->head == lq->tail) {

fprintf(stderr, "LinkQueue: Queue underflow.\n") ;
Ink.p = Ink.q = NULL;
Ink.cpq - Ink.epq = 0.0;
return Ink;

I

/* Extract the element. */
Ink " lq->p[lq->tail];

/* Bump the tail index. */
lq->tail++;
if (lq->tail >= lq->alloclen)

lq->tail " 0;

return Ink;
)

/**/
/* Allocate another unit of "defchunksize" queue elements and copy the old
/* elements in. This is rather inefficient, so it deserves future attention.
/**/
void
Lqextend(LinkQueue *lq, int newsize)
(

Link *newp;
int i ;

/* Check argument passed. If zero, then extend one chunksize. */
if (newsize -= 0 || newsize < lq->alloclen)

newsize = lq->alloclen + defchunksize;

/* Allocate the new space. */
newp " (Link *) malloc(newsize * sizeof (Link));

/* Copy old queue contents into new queue. */
if (lq->tail < lq->head) (

for (i = lq->tail ; i < lq->head ; i++)
newp[i-lq->tail] = lq->p[i];

lq->head = lq->head - lq->tail;
lq->tail - 0;

)
else if (lq->alloclen > 0) {

for (i «= lq->tail ; i < lq->alloclen ; i++)
newp[i-lq->tail] «= lq->p[i];

for (i •= 0 ; i < lq->head ; i++)
newp[lq->alloclen-lq->tail+i] = lq->p[i];

lq->head - ((lq->head - lq->tail + lq->alloclen) % lq->alloclen);
lq->tail = 0;

}

/* Free up the old queue storage. */
if (lq->p)

free(lq->p);

/* Update queue management information. */

www.manaraa.com

157

lq->p - newp;
lq->alloclen - newsize;

)

/**/
/* Pretty print the contents of the queue.
/**/
void
Lqprint (LinkQueue *lq)
{

int i;

printf("Queue dump: ");
for (i - lq->tail ; i !- lq->head ; i - (i + 1) % lq->alloclen)

printf("[p-%d q-%d cpq-%g epq-%g]\n",
lq->p[i).p, lq->p[i].q, lq->p[i].cpq, lq->p[i].epq);

printf("\n");

/******************/

/* Heap Functions */
/******************!

/**/
/* Constructor. Allocate no initial storage.
/**/
LinkHeap *
Lhalloc(void)
{

LinkHeap *lh;

Ih " (LinkHeap *) malloc(sizeof(LinkHeap));
lh->alloclen - lh->tail = 0; /* Point one past last element.
lh->p - NOLL;
return Ih;

/**/
/* Destructor.
/**/
void
Lhfree(LinkHeap *lh)
(

if (lh->p)
free(lh->p);

if (Ih)
free(Ih);

)

/**/
/* Add an element to the heap, then rebuild the heap.
/**/
void
Lhenqueue(LinkHeap *lh, Link Ink, int stats [])
(

int i, j;
Link temp;

/* Update the stats structure, add element to the end of the heap, and
/* index to the new element and its parent. */
stats[Ink.vis]++;
/* Check for overflow. */
if (lh->tail >= lh->alloclen)

Lhextend(Ih, 0);
lh->p[lh->tail) = ink;
i " lh->tail++;
j - (i - 1) » 1;

www.manaraa.com

158

/* While not at the root... */
while (i) (

/* If the daughter is greater than the parent, swap them. */
if (lh->p[i].epq > lh->p[j).epq) (

temp - lh->p[j];
lh->p[j] - lh->p[i];
lh->p[ij - temp;

}
else

break;

/* If there was a swap, move a level up the heap, and repeat. */
i - (i - 1) » 1;
j - (j - 1) » 1;

)
}

/**/
/* Remove the root of the heap, and reheapify.
1**1
Link
Lhdequeue(LinkHeap *lh, int stats[])
{

Link Ink;

/* Check for underflow. */
if (lh->tail <" 0) {

fprintf(stderr, "Lhdequeue(): Heap underflow.\n") ;
Ink.p " Ink.q = NULL;
Ink.epq - Ink.epq = 0.0;
return Ink;

)

/* Remove the root element, and replace it with the tail element. */
Ink - lh->p[0);
if (—lh->tail > 0)

lh->p[0] = lh->p[lh->tail];

/* Heapify from the root down since we replaced the root element. */
Lhheapify(Ih, 0);

/* Update the stats structure. */
stats[Ink.vis]—;
return Ink;

)

/**/
/* Update the epq member of each element and reheapify.
/ * * /
void
Lhrebuild(LinkHeap *lh)
(

int i ;

for (i = 0 ; i < lh->tail ; i++) /* Update the epq field. */
Lupdate(&lh->p[i]);

for (i = (lh->tail » 1) - 1 ; i >= 0 ; i—) /* Build a new heap. */
Lhheapify(Ih, i);

)

void
Lupdate(Link *lnk)
(

float s, t;

if (lnk->p && lnk->q) (
/ * * /

www.manaraa.com

159

/* Compute the 1-norm of the maximum amount of light
/* emitted from patch p and reflected from patch q, or vice versa.
/**/
s - lnk->p->e[rhoelemR] * lnk->q->e[solelemR]

+ lnk->p->e[rhoelemG] * lnk->q->e[solelemG]
+ lnk->p->e[rhoelemB] * lnk->q->e[solelemB];

t - lnk->q->e[rhoelemR] * lnk->p->e[solelemR]
+ lnk->q->e[rhoelemG] * lnk->p->e[solelemG]
+ lnk->q->e [rhoeleirB] * lnk->p->e [solelemB] ;

lnk->epq - Fmax(s, t) * lnk->err * 0.001;
}
else

lnk->epq - 0.0;
)

/ * * /
/* Update the epq member of each element and reheapify.
/**/
void
Lhheapify(LinkHeap *lh, int root)
{

int i, j, k;
Link temp;

i = root;
j - (i « 1) + 1;
k - j + 1;

while (j < lh->tail) (
if (lh->p[j].epq > lh->p[i].epq &&

(k < lh->tail && lh->p[j].epq > lh->p[k].epq || k >- lh->tail)) {
temp = lh->p[i];
lh->p[i] " lh->p[j];
lh->p[jj - temp;
i - i;

}

else if (lh->p[k].epq > lh->p[i].epq S& k < lh->tail) {
temp = lh->p[i];
lh->p[i] - lh->p[k];
lh->p[k] = temp;
i = k;

)

else
break;

j = (i « 1) + 1;
k = j + 1;

)
)

/ * * /
/* Clear all elements from the heap.
/ * * /
void
Lhclear(LinkHeap *lh)
{

lh->tail = 0;
)

/**/
/* Allocate more space for the heap.
/ * * /
void
Lhextend(LinkHeap *lh, int newsize)
(

Link *newp;
int i;

/* Check argument passed. If zero, then extend one chunksize. */

I

www.manaraa.com

160

if (newslze «— 0 || newsize < lh->alloclen) (
newsize - lh->alloolen + defchunksize;

)

/* Allocate a bigger storage area. */
newp " (Link *) malloc(newsize * sizeof(Link));

/* Copy the old elements to the new area. */
for (i - 0 ; i < lh->alloclen ; i++)

newp[i] - lh->p[i];

/* Delete the old storage area. */
if (lh->p)

free(lh->p);

/* Update heap management members. */
lh->p - newp;
lh->alloclen = newsize;

)

/ * * /
/* Pretty print the contents of the heap.
/**/
void
Lhprint(LinkHeap *lh)
{

int i;

printf("Heap dump:\n");
for (i = 0 ; i < lh->tail ; i++) {

printf("[p=%4d q=%4d cpq=%10.4f epq=%10.4f]\n",
lh->p[il.p->id, lh->p[il.q->id, lh->p[i].cpq, lh->p[i].epq);

printf("\n");
)

www.manaraa.com

161

A.7 Source file matvec.c

/**/
/* File: matvec.c
/* 4x4 and 4x1 Matrix and vector manipulation and transformation code.
/**/

/**/
/* Vector Functions */
/**/

/* Zero a vector. */
void
Vzero (Vector v)
{

v[0] " v[l] - v[2] = 0.0;
)

/* Copy a vector. */
•ifndef Vcopy
void
Vcopy(Vector dest, Vector a)

i
dest[0] = a [0];
dest[1] = a [11 ;
dest [2] = a [2];

)
iendif

/* Pretty-print the vector. */
void
Vprint(Vector v)
{

printf("[%g %g %g] v[0], v[l], v[2]);
)

/* Return the magnitude of a vector. */
float
Vmag(Vector v)
(

return sqrt((double) Vdot(v, v));
)

/* Return the magnitude squared of a vector. */
•ifndef Vmagsq
float
Vmagsq(Vector v)
{

return Vdot(v, v);
)

iendif

/* Add two vectors. */
•ifndef Vsum
void
Vsum(Vector dest, Vector a, Vector b)
(

dest[0) = a[0] + b[0);
dest[1] = a[1] + bil] ;
dest[2] - a[2] + b[2);

•include
•include
•include
•include

<stdio.h>
<math.h>
"slal.h"
"proto.h"

www.manaraa.com

162

fendif

/* Subtract two vectors. */
•ifndef Vdiff
void
Vdiff(Vector dest, Vector a, Vector b)
(

dest [0] "= a[0) - b[0];
dest[1] -ail] - b[l);
dest[2] - a[2] - b[2j;

)
fendif

/* Scale vector by a scalar. */
void
Vscale(Vector dest, Vector a, float s)
(

dest[0] - a[0] * s;
dest[1] -ail] * s;
dest i2] = aiZ] * s;

)

/* Vector cross product */
•ifndef Vcross
void
Vcross(Vector dest, Vector a, Vector b)
(

Vector vtemp;

vtempIO] - (a[l] * b[2]) - (b[l] * a[2]);
vtemp[1] - -((a[0] * b[2]) - (b[0] * a[2]));
vtempi2] - (a iO] * bilj) - (bioj * ail]);
Vcopy(dest, vtemp);

}

•endif

/* Vector dot product */
•ifndef Vdot
float
Vdot(Vector a, Vector b)
{

return a[0] * b[0] + a[l] * b[l) + a[2) * b[2);
)
•endif

	1993
	Parallel hierarchical radiosity rendering
	Michael Brannon Carter
	Recommended Citation

	tmp.1417450324.pdf.dfHky

